Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 1, Pages 67–76
DOI: https://doi.org/10.4213/mzm14087
(Mi mzm14087)
 

On extremal functions in inequalities for entire functions

V. P. Zastavnyi

Donetsk State University
References:
Abstract: Let $B_{\sigma}$, $\sigma>0$, be the class of entire functions of exponential type $\leqslant\sigma$ bounded on the real line. For a number $\tau\in\mathbb{R}$ and a sequence $\{c_k\}_{k\in\mathbb{Z}}$ of complex numbers satisfying the condition $\sum_{k\in\mathbb{Z}}|c_k|<+\infty$, the operator $H$ on $B_{\sigma}$ defined by
$$ H(f)(x)=\sum_{k\in\mathbb{Z}}c_k f\biggl(x-\tau+\frac{k\pi}{\sigma}\biggr) $$
is considered. Obviously,
$$ |H(f)(x)|\leqslant \varkappa \|f\|_{\infty}, \qquad x\in\mathbb{R}, \quad f\in B_{\sigma}, \quad \varkappa=\sum_{k\in\mathbb{Z}} |c_k|. $$
The main purpose of the paper is to describe all extremal functions for this inequality. Theorem 1 proved in the paper asserts that if (1) $\overline{c_{s}}c_{s+1}<0$ for some $s\in\mathbb{Z}$ and (2) there exists an $\varepsilon\in\mathbb{C}$ with $|\varepsilon|=1$ such that $\varepsilon c_k (-1)^k\geqslant 0$ for all $k\in\mathbb{Z}$, then the set of all extremal functions for the above inequality coincides with the set of functions of the form $f(t)=\mu e^{i\sigma t}+\nu e^{-i\sigma t}$, $\mu,\nu\in\mathbb{C}$. The proof of Theorem 1 essentially uses Theorem 2, which says that if $f\in B_{\sigma}$ and there exists a point $\xi\in\mathbb{R}$ for which $|f(\xi)|=\|f\|_{\infty}$ and $f(\xi+\pi/\sigma)=-f(\xi)$, then $f(t)=\mu e^{i\sigma t}+\nu e^{-i\sigma t}$, $\mu,\nu\in\mathbb{C}$. Theorem 3 gives general examples of operators satisfying both conditions of Theorem 1. In particular, such is the fractional derivative operator $H(f)(x)=f^{(r,\beta)}(x)$ for $r\geqslant 1$ and $\beta\in\mathbb{R}$.
Keywords: entire function of exponential type, extremal function, positive definite function, Bernstein's inequality, Bernstein–Szegő inequality.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 1023031100003-2-1.1.1
This work was performed in the framework of state assignment no. 1023031100003-2-1.1.1.
Received: 25.06.2023
Revised: 12.01.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 1, Pages 58–65
DOI: https://doi.org/10.1134/S0001434624070058
Bibliographic databases:
Document Type: Article
UDC: 517.518.86
MSC: 41A17
Language: Russian
Citation: V. P. Zastavnyi, “On extremal functions in inequalities for entire functions”, Mat. Zametki, 116:1 (2024), 67–76; Math. Notes, 116:1 (2024), 58–65
Citation in format AMSBIB
\Bibitem{Zas24}
\by V.~P.~Zastavnyi
\paper On extremal functions in inequalities for entire functions
\jour Mat. Zametki
\yr 2024
\vol 116
\issue 1
\pages 67--76
\mathnet{http://mi.mathnet.ru/mzm14087}
\crossref{https://doi.org/10.4213/mzm14087}
\transl
\jour Math. Notes
\yr 2024
\vol 116
\issue 1
\pages 58--65
\crossref{https://doi.org/10.1134/S0001434624070058}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85207222517}
Linking options:
  • https://www.mathnet.ru/eng/mzm14087
  • https://doi.org/10.4213/mzm14087
  • https://www.mathnet.ru/eng/mzm/v116/i1/p67
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :8
    Russian version HTML:25
    References:36
    First page:23
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025