Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1987, Volume 29, Issue 1, Pages 159–192
DOI: https://doi.org/10.1070/IM1987v029n01ABEH000965
(Mi im1536)
 

This article is cited in 30 scientific papers (total in 30 papers)

Spectral properties of generic dynamical systems

A. M. Stepin
References:
Abstract: Dynamical systems with new spectral properties are constructed using approximation theory. It is proved that these properties are generic (in a metric and topological sense) and realized within the class of smooth systems preserving a smooth measure.
Bibliography: 21 titles.
Received: 29.11.1984
Bibliographic databases:
UDC: 517.987
MSC: Primary 28D05, 47A35; Secondary 28D20, 54H20, 58F11
Language: English
Original paper language: Russian
Citation: A. M. Stepin, “Spectral properties of generic dynamical systems”, Math. USSR-Izv., 29:1 (1987), 159–192
Citation in format AMSBIB
\Bibitem{Ste86}
\by A.~M.~Stepin
\paper Spectral properties of generic dynamical systems
\jour Math. USSR-Izv.
\yr 1987
\vol 29
\issue 1
\pages 159--192
\mathnet{http://mi.mathnet.ru/eng/im1536}
\crossref{https://doi.org/10.1070/IM1987v029n01ABEH000965}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=864178}
\zmath{https://zbmath.org/?q=an:0631.28013}
Linking options:
  • https://www.mathnet.ru/eng/im1536
  • https://doi.org/10.1070/IM1987v029n01ABEH000965
  • https://www.mathnet.ru/eng/im/v50/i4/p801
  • This publication is cited in the following 30 articles:
    1. Sławomir Solecki, “Generic measure preserving transformations and the closed groups they generate”, Invent. math., 231:2 (2023), 805  crossref
    2. RIGOBERTO ZELADA, “Mixing and rigidity along asymptotically linearly independent sequences”, Ergod. Th. Dynam. Sys., 43:10 (2023), 3506  crossref
    3. I. V. Podvigin, “On possible estimates of the rate of pointwise convergence in the Birkhoff ergodic theorem”, Siberian Math. J., 63:2 (2022), 316–325  mathnet  crossref  crossref
    4. V. V. Ryzhikov, “Mixing Sets for Rigid Transformations”, Math. Notes, 110:4 (2021), 565–570  mathnet  crossref  crossref  isi  elib
    5. Trans. Moscow Math. Soc., 82 (2021), 15–36  mathnet  crossref
    6. V. V. Ryzhikov, “Compact families and typical entropy invariants of measure-preserving actions”, Trans. Moscow Math. Soc., 82 (2021), 117–123  mathnet  crossref
    7. V. V. Ryzhikov, “Measure-preserving rank one transformations”, Trans. Moscow Math. Soc., 81:2 (2020), 229–259  mathnet  crossref  elib
    8. MAHMOOD ETEDADIALIABADI, “Generic behavior of a measure-preserving transformation”, Ergod. Th. Dynam. Sys., 40:4 (2020), 904  crossref
    9. M. S. Lobanov, V. V. Ryzhikov, “Special weak limits and simple spectrum of the tensor products of flows”, Sb. Math., 209:5 (2018), 660–671  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. A. Yu. Kushnir, V. V. Ryzhikov, “Weak Closures of Ergodic Actions”, Math. Notes, 101:2 (2017), 277–283  mathnet  crossref  crossref  mathscinet  isi  elib
    11. V. V. Ryzhikov, A. E. Troitskaya, “Mixing flows with homogeneous spectrum of multiplicity $2$”, J. Math. Sci., 248:5 (2020), 642–646  mathnet  crossref
    12. Philipp Kunde, “Smooth diffeomorphisms with homogeneous spectrum and disjointness of convolutions”, JMD, 10:02 (2016), 439  crossref
    13. R. A. Konev, V. V. Ryzhikov, “On the Collection of Spectral Multiplicities $\{2,4,\dots,2^n\}$ for Totally Ergodic $\mathbb{Z}^2$-Actions”, Math. Notes, 96:3 (2014), 360–368  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    14. V. V. Ryzhikov, “Simple spectrum of the tensor product of powers of a mixing automorphism”, Trans. Moscow Math. Soc., 73 (2012), 183–191  mathnet  crossref  mathscinet  zmath  elib
    15. ALEXANDRE I. DANILENKO, “A survey on spectral multiplicities of ergodic actions”, Ergod. Th. Dynam. Sys, 2011, 1  crossref
    16. A. I. Danilenko, V. V. Ryzhikov, “Spectral Multiplicities of Infinite Measure Preserving Transformations”, Funct. Anal. Appl., 44:3 (2010), 161–170  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    17. V. V. Ryzhikov, “Spectral multiplicities and asymptotic operator properties of actions with invariant measure”, Sb. Math., 200:12 (2009), 1833–1845  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    18. V. V. Ryzhikov, “Weak limits of powers, simple spectrum of symmetric products, and rank-one mixing constructions”, Sb. Math., 198:5 (2007), 733–754  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    19. S. V. Tikhonov, “A complete metric in the set of mixing transformations”, Sb. Math., 198:4 (2007), 575–596  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    20. A. E. Troitskaya, “On isomorphity of measure-preserving $\mathbb Z^2$-actions that have isomorphic Cartesian powers”, J. Math. Sci., 159:6 (2009), 879–893  mathnet  crossref  mathscinet  zmath  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:650
    Russian version PDF:391
    English version PDF:24
    References:91
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025