Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1984, Volume 23, Issue 1, Pages 83–147
DOI: https://doi.org/10.1070/IM1984v023n01ABEH001459
(Mi im1427)
 

This article is cited in 36 scientific papers (total in 37 papers)

Prym varieties: theory and applications

V. V. Shokurov
References:
Abstract: In this paper the author determines when the principally polarized Prymian P(˜C,I) of a Beauville pair (˜C,I) satisfying a certain stability type condition is isomorphic to the Jacobian of a nonsingular curve. As an application, he points out new components in the Andreotti–Mayer variety Ng4 of principally polarized Abelian varieties of dimension g whose theta-divisors have singular locus of dimension g4; he also proves a rationality criterion for conic bundles over a minimal rational surface in terms of the intermediate Jacobian. The first part of the paper contains the necessary preliminary material introducing the reader to the modern theory of Prym varieties.
Bibliography: 32 titles.
Received: 04.05.1982
Bibliographic databases:
Document Type: Article
UDC: 513.6
MSC: Primary 14H10, 14K30; Secondary 14H45
Language: English
Original paper language: Russian
Citation: V. V. Shokurov, “Prym varieties: theory and applications”, Math. USSR-Izv., 23:1 (1984), 83–147
Citation in format AMSBIB
\Bibitem{Sho83}
\by V.~V.~Shokurov
\paper Prym varieties: theory and applications
\jour Math. USSR-Izv.
\yr 1984
\vol 23
\issue 1
\pages 83--147
\mathnet{http://mi.mathnet.ru/eng/im1427}
\crossref{https://doi.org/10.1070/IM1984v023n01ABEH001459}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=712095}
\zmath{https://zbmath.org/?q=an:0572.14025}
Linking options:
  • https://www.mathnet.ru/eng/im1427
  • https://doi.org/10.1070/IM1984v023n01ABEH001459
  • https://www.mathnet.ru/eng/im/v47/i4/p785
  • This publication is cited in the following 37 articles:
    1. Yuri Prokhorov, “Rationality of Fano threefolds with terminal Gorenstein singularities, II”, Rend. Circ. Mat. Palermo (2), 72 (2023), 1797–1821  mathnet  crossref  scopus
    2. Sara Torelli, “On the Jacobian locus in the Prym locus and geodesics”, Advances in Geometry, 22:3 (2022), 431  crossref
    3. Yuri Prokhorov, “Conic bundle structures on Q-Fano threefolds”, Electron Res. Arch., 30:5 (2022), 1881–1897  mathnet  crossref
    4. Cheltsov I. Park J. Prokhorov Yu. Zaidenberg M., “Cylinders in Fano Varieties”, EMS Surv. Math. Sci., 8:1-2 (2021), 39–105  crossref  isi
    5. Tschinkel Yu., “Rationality and Specialization”, Afr. Mat., 31:1, SI (2020), 191–205  crossref  isi
    6. P. I. Borisova, O. K. Sheinman, “Hitchin Systems on Hyperelliptic Curves”, Proc. Steklov Inst. Math., 311 (2020), 22–35  mathnet  crossref  crossref  mathscinet  isi  elib
    7. Cheltsov I. Przyjalkowski V. Shramov C., “Which Quartic Double Solids Are Rational?”, J. Algebr. Geom., 28:2 (2019), 201–243  crossref  mathscinet  zmath  isi  scopus
    8. Yuri G. Prokhorov, “Rationality of Fano Threefolds with Terminal Gorenstein Singularities. I”, Proc. Steklov Inst. Math., 307 (2019), 210–231  mathnet  crossref  crossref  isi  elib
    9. Andrew Kresch, Yuri Tschinkel, “Models of Brauer–Severi surface bundles”, Mosc. Math. J., 19:3 (2019), 549–595  mathnet  crossref
    10. Ahmadinezhad H. Okada T., “Stable Rationality of Higher Dimensional Conic Bundles”, Epijournal Geom. Algebr., 2 (2018), UNSP 5  isi
    11. Yu. G. Prokhorov, “The rationality problem for conic bundles”, Russian Math. Surveys, 73:3 (2018), 375–456  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Morgan V. Brown, James McKernan, Roberto Svaldi, Hong R. Zong, “A geometric characterization of toric varieties”, Duke Math. J., 167:5 (2018)  crossref
    13. Auel A. Bernardara M., “Cycles, Derived Categories, and Rationality”, Surveys on Recent Developments in Algebraic Geometry, Proceedings of Symposia in Pure Mathematics, 95, ed. Coskun I. DeFernex T. Gibney A., Amer Mathematical Soc, 2017, 199–266  crossref  isi
    14. Ivan Cheltsov, Victor Przyjalkowski, Constantin Shramov, “Quartic double solids with icosahedral symmetry”, Eur. J. Math., 2:1 (2016), 96–119  mathnet  crossref  isi  scopus
    15. V. Guletskiǐ, A. Tikhomirov, “Algebraic Cycles on Quadric Sections of Cubics in ℙ4 under the Action of Symplectomorphisms”, Proceedings of the Edinburgh Mathematical Society, 2015, 1  crossref
    16. Cremona Groups and the Icosahedron, 2015, 438  crossref
    17. Hong K., “Non-Factorial Quartic Double Solids”, Adv. Geom., 14:1 (2014), 161–174  crossref  isi
    18. Marcello Bernardara, Michele Bolognesi, “Derived categories and rationality of conic bundles”, Compositio Math, 2013, 1  crossref
    19. Asher Auel, Marcello Bernardara, Michele Bolognesi, “Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems”, Journal de Mathématiques Pures et Appliquées, 2013  crossref
    20. Bernardara M. Bolognesi M., “Categorical Representability and Intermediate Jacobians of Fano Threefolds”, Derived Categories in Algebraic Geometry - Tokyo 2011, EMS Ser. Congr. Rep., ed. Kawamata Y., Eur. Math. Soc., 2012, 1–25  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:641
    Russian version PDF:297
    English version PDF:37
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025