Abstract:
General linear model parabolic boundary value problems are studied (in a revised formulation) in the Sobolev spaces $\mathscr H^s(\Omega)$ ($-\infty<s<\infty$) of generalized functions (distributions) –the $L_2$-theory. The well-posed solvability of these problems in suitable function spaces is proved.
Bibliography: 43 titles.
Citation:
N. V. Zhitarashu, “The $L_2$-theory of generalized solutions of general linear model parabolic boundary value problems”, Math. USSR-Izv., 31:2 (1988), 273–305
\Bibitem{Zhi87}
\by N.~V.~Zhitarashu
\paper The $L_2$-theory of generalized solutions of general linear model parabolic boundary value problems
\jour Math. USSR-Izv.
\yr 1988
\vol 31
\issue 2
\pages 273--305
\mathnet{http://mi.mathnet.ru/eng/im1327}
\crossref{https://doi.org/10.1070/IM1988v031n02ABEH001072}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=925090}
\zmath{https://zbmath.org/?q=an:0686.35057|0658.35045}
Linking options:
https://www.mathnet.ru/eng/im1327
https://doi.org/10.1070/IM1988v031n02ABEH001072
https://www.mathnet.ru/eng/im/v51/i5/p962
This publication is cited in the following 1 articles:
V. I. Gorbachuk, A. V. Knyazyuk, “Boundary values of solutions of operator-differential equations”, Russian Math. Surveys, 44:3 (1989), 67–111