Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1988, Volume 31, Issue 1, Pages 193–207
DOI: https://doi.org/10.1070/IM1988v031n01ABEH001056
(Mi im1323)
 

This article is cited in 30 scientific papers (total in 30 papers)

The method of isomonodromy deformations and connection formulas for the second Painlevé transcendent

A. R. Its, A. A. Kapaev
References:
Abstract: A complete asymptotic description is given for the general real solution of the second Painlevé equation, uxxxu+2u3=0, including explicit formulas connecting the asymptotics as x±. The approach is based on the asymptotic solution of the direct problem of monodromy theory for a linear system associated with the Painlevé equation in the framework of the method of isomonodromy deformations. There is a brief exposition of the method of isomonodromy deformations itself, which is an analogue in the theory of nonlinear ordinary differential equations of the familiar inverse problem method.
Bibliography: 23 titles.
Received: 22.07.1985
Bibliographic databases:
UDC: 517.9
MSC: Primary 34E20; Secondary 34A20
Language: English
Original paper language: Russian
Citation: A. R. Its, A. A. Kapaev, “The method of isomonodromy deformations and connection formulas for the second Painlevé transcendent”, Math. USSR-Izv., 31:1 (1988), 193–207
Citation in format AMSBIB
\Bibitem{ItsKap87}
\by A.~R.~Its, A.~A.~Kapaev
\paper The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent
\jour Math. USSR-Izv.
\yr 1988
\vol 31
\issue 1
\pages 193--207
\mathnet{http://mi.mathnet.ru/eng/im1323}
\crossref{https://doi.org/10.1070/IM1988v031n01ABEH001056}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=914864}
\zmath{https://zbmath.org/?q=an:0681.34053}
Linking options:
  • https://www.mathnet.ru/eng/im1323
  • https://doi.org/10.1070/IM1988v031n01ABEH001056
  • https://www.mathnet.ru/eng/im/v51/i4/p878
  • This publication is cited in the following 30 articles:
    1. Wen-Gao Long, Zhao-Yun Zeng, “On the Connection Problem for the Second Painlevé Equation with Large Initial Data”, Constr Approx, 55:3 (2022), 861  crossref
    2. Thomas Bothner, “On the origins of Riemann–Hilbert problems in mathematics*”, Nonlinearity, 34:4 (2021), R1  crossref
    3. Alexey V. Ivanov, Polina Yu. Panteleeva, 2021 Days on Diffraction (DD), 2021, 1  crossref
    4. Anatoly Neishtadt, Anton Artemyev, Dmitry Turaev, “Remarkable charged particle dynamics near magnetic field null lines”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:5 (2019)  crossref
    5. Thomas Bothner, “Transition asymptotics for the Painlevé II transcendent”, Duke Math. J., 166:2 (2017)  crossref
    6. I Yu Gaiur, N A Kudryashov, “Asymptotic solutions of a fourth—order analogue for the Painlevé equations”, J. Phys.: Conf. Ser., 788 (2017), 012011  crossref
    7. Dan Dai, Weiying Hu, “Connection formulas for the Ablowitz–Segur solutions of the inhomogeneous Painlevé II equation”, Nonlinearity, 30:7 (2017), 2982  crossref
    8. R. N. Garifullin, “On simultaneous solution of the KdV equation and a fifth-order differential equation”, Ufa Math. J., 8:4 (2016), 52–61  mathnet  crossref  isi  elib
    9. K. Uldall Kristiansen, “Periodic orbits near a bifurcating slow manifold”, Journal of Differential Equations, 2015  crossref
    10. L. M. Zelenyi, A. I. Neishtadt, A. V. Artemyev, D. L. Vainchtein, H. V. Malova, “Quasiadiabatic dynamics of charged particles in a space plasma”, Phys. Usp., 56:4 (2013), 347–394  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    11. A M Grundland, S Post, “Soliton surfaces via a zero-curvature representation of differential equations”, J. Phys. A: Math. Theor, 45:11 (2012), 115204  crossref
    12. A. Y. Ukhorskiy, M. I. Sitnov, R. M. Millan, B. T. Kress, “The role of drift orbit bifurcations in energization and loss of electrons in the outer radiation belt”, J. Geophys. Res, 116:A9 (2011)  crossref
    13. Jinho Baik, Robert Buckingham, Jeffery DiFranco, Alexander Its, “Total integrals of global solutions to Painlevé II”, Nonlinearity, 22:5 (2009), 1021  crossref  isi
    14. M. Kaan Öztürk, R. A. Wolf, “Bifurcation of drift shells near the dayside magnetopause”, J Geophys Res, 112:a7 (2007), A07207  crossref  isi
    15. A R Its, A A Kapaev, “Quasi-linear Stokes phenomenon for the second Painlevé transcendent”, Nonlinearity, 16:1 (2003), 363  crossref  mathscinet  zmath  isi  elib
    16. Peter A Clarkson, “Painlevé equations—nonlinear special functions”, Journal of Computational and Applied Mathematics, 153:1-2 (2003), 127  crossref
    17. V. R. Kudashev, B. I. Suleimanov, “Small-amplitude dispersion oscillations on the background of the nonlinear geometric optic approximation”, Theoret. and Math. Phys., 118:3 (1999), 325–332  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    18. Nalini Joshi, The Painlevé Property, 1999, 181  crossref
    19. P. A. Deift, X. Zhou, “Asymptotics for the Painlevé II equation”, Comm Pure Appl Math, 48:3 (1995), 277  crossref  mathscinet  zmath
    20. A R Its, A S Fokas, A A Kapaev, Nonlinearity, 7:5 (1994), 1291  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:843
    Russian version PDF:274
    English version PDF:34
    References:99
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025