Abstract:
A complete asymptotic description is given for the general real solution of the second Painlevé equation, uxx−xu+2u3=0, including explicit formulas connecting the asymptotics as x→±∞. The approach is based on the asymptotic solution of the direct problem of monodromy theory for a linear system associated with the Painlevé equation in the framework of the method of isomonodromy deformations. There is a brief exposition of the method of isomonodromy deformations itself, which is an analogue in the theory of nonlinear ordinary differential equations of the familiar inverse problem method.
Bibliography: 23 titles.
Citation:
A. R. Its, A. A. Kapaev, “The method of isomonodromy deformations and connection formulas for the second Painlevé transcendent”, Math. USSR-Izv., 31:1 (1988), 193–207
\Bibitem{ItsKap87}
\by A.~R.~Its, A.~A.~Kapaev
\paper The~method of isomonodromy deformations and connection formulas for the second Painlev\'e transcendent
\jour Math. USSR-Izv.
\yr 1988
\vol 31
\issue 1
\pages 193--207
\mathnet{http://mi.mathnet.ru/eng/im1323}
\crossref{https://doi.org/10.1070/IM1988v031n01ABEH001056}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=914864}
\zmath{https://zbmath.org/?q=an:0681.34053}
Linking options:
https://www.mathnet.ru/eng/im1323
https://doi.org/10.1070/IM1988v031n01ABEH001056
https://www.mathnet.ru/eng/im/v51/i4/p878
This publication is cited in the following 30 articles:
Wen-Gao Long, Zhao-Yun Zeng, “On the Connection Problem for the Second Painlevé Equation with Large Initial Data”, Constr Approx, 55:3 (2022), 861
Thomas Bothner, “On the origins of Riemann–Hilbert problems in mathematics*”, Nonlinearity, 34:4 (2021), R1
Alexey V. Ivanov, Polina Yu. Panteleeva, 2021 Days on Diffraction (DD), 2021, 1
Anatoly Neishtadt, Anton Artemyev, Dmitry Turaev, “Remarkable charged particle dynamics near magnetic field null lines”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:5 (2019)
Thomas Bothner, “Transition asymptotics for the Painlevé II transcendent”, Duke Math. J., 166:2 (2017)
I Yu Gaiur, N A Kudryashov, “Asymptotic solutions of a fourth—order analogue for the Painlevé equations”, J. Phys.: Conf. Ser., 788 (2017), 012011
Dan Dai, Weiying Hu, “Connection formulas for the Ablowitz–Segur solutions of the inhomogeneous Painlevé II equation”, Nonlinearity, 30:7 (2017), 2982
R. N. Garifullin, “On simultaneous solution of the KdV equation and a fifth-order differential equation”, Ufa Math. J., 8:4 (2016), 52–61
K. Uldall Kristiansen, “Periodic orbits near a bifurcating slow manifold”, Journal of Differential Equations, 2015
L. M. Zelenyi, A. I. Neishtadt, A. V. Artemyev, D. L. Vainchtein, H. V. Malova, “Quasiadiabatic dynamics of charged particles in a space plasma”, Phys. Usp., 56:4 (2013), 347–394
A M Grundland, S Post, “Soliton surfaces via a zero-curvature representation of differential equations”, J. Phys. A: Math. Theor, 45:11 (2012), 115204
A. Y. Ukhorskiy, M. I. Sitnov, R. M. Millan, B. T. Kress, “The role of drift orbit bifurcations in energization and loss of electrons in the outer radiation belt”, J. Geophys. Res, 116:A9 (2011)
Jinho Baik, Robert Buckingham, Jeffery DiFranco, Alexander Its, “Total integrals of global solutions to Painlevé II”, Nonlinearity, 22:5 (2009), 1021
M. Kaan Öztürk, R. A. Wolf, “Bifurcation of drift shells near the dayside magnetopause”, J Geophys Res, 112:a7 (2007), A07207
A R Its, A A Kapaev, “Quasi-linear Stokes phenomenon for the second Painlevé transcendent”, Nonlinearity, 16:1 (2003), 363
Peter A Clarkson, “Painlevé equations—nonlinear special functions”, Journal of Computational and Applied Mathematics, 153:1-2 (2003), 127
V. R. Kudashev, B. I. Suleimanov, “Small-amplitude dispersion oscillations on the background of the nonlinear geometric optic approximation”, Theoret. and Math. Phys., 118:3 (1999), 325–332
Nalini Joshi, The Painlevé Property, 1999, 181
P. A. Deift, X. Zhou, “Asymptotics for the Painlevé II equation”, Comm Pure Appl Math, 48:3 (1995), 277
A R Its, A S Fokas, A A Kapaev, Nonlinearity, 7:5 (1994), 1291