Abstract:
Analogues of the Pearcey integral describe the small dispersion influence on the beginning of spontaneous-vanishing processes for the nonlinear geometric optic approximation amplitude, which is a solution of equations of the focusing nonlinear Schrödinger equation type. The asymptotic behavior as x2+t2→∞ of these analogues is considered. For x2+t2→∞, the special functions under consideration have a domain of small-amplitude high-frequency oscillations, which occur on the background of the nonzero-amplitude nonlinear geometric optic approximation.
Citation:
V. R. Kudashev, B. I. Suleimanov, “Small-amplitude dispersion oscillations on the background of the nonlinear geometric optic approximation”, TMF, 118:3 (1999), 413–422; Theoret. and Math. Phys., 118:3 (1999), 325–332
\Bibitem{KudSul99}
\by V.~R.~Kudashev, B.~I.~Suleimanov
\paper Small-amplitude dispersion oscillations on the background of the nonlinear geometric optic approximation
\jour TMF
\yr 1999
\vol 118
\issue 3
\pages 413--422
\mathnet{http://mi.mathnet.ru/tmf714}
\crossref{https://doi.org/10.4213/tmf714}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1713732}
\zmath{https://zbmath.org/?q=an:0946.35099}
\elib{https://elibrary.ru/item.asp?id=13331141}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 118
\issue 3
\pages 325--332
\crossref{https://doi.org/10.1007/BF02557329}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000080492800012}
Linking options:
https://www.mathnet.ru/eng/tmf714
https://doi.org/10.4213/tmf714
https://www.mathnet.ru/eng/tmf/v118/i3/p413
This publication is cited in the following 6 articles:
B. I. Suleimanov, A. M. Shavlukov, “Integrable Abel equation and asymptotics
of symmetry solutions of Korteweg-de Vries equation”, Ufa Math. J., 13:2 (2021), 99–106
B. I. Suleimanov, “On Analogs of Wave Catastrophe Functions that are Solutions of Nonlinear Integrable Equations”, J Math Sci, 258:1 (2021), 81
B. I. Suleimanov, “Ob analogakh funktsii volnovykh katastrof, yavlyayuschikhsya resheniyami nelineinykh integriruemykh uravnenii”, Differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 163, VINITI RAN, M., 2019, 81–95
Sultanov O., Vii International Conference Problems of Mathematical Physics and Mathematical Modelling, Journal of Physics Conference Series, 1205, IOP Publishing Ltd, 2019
B. I. Suleimanov, “Effect of a small dispersion on self-focusing in a spatially one-dimensional case”, JETP Letters, 106:6 (2017), 400–405
Ershov A.A., Suleimanov B.I., “Some Features of Bending of a Rod Under a Strong Longitudinal Compression”, Russ. J. Math. Phys., 24:2 (2017), 216–233