Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1990, Volume 34, Issue 2, Pages 441–454
DOI: https://doi.org/10.1070/IM1990v034n02ABEH000661
(Mi im1249)
 

This article is cited in 6 scientific papers (total in 6 papers)

A constructive characterization of harmonic functions in domains with quasiconformal boundaries

V. V. Andrievskii
References:
Abstract: For the case of a bounded Jordan domain $G\subset\mathbf C$ with quasiconformal boundary, the author solves the problem, posed by V. K. Dzyadyk in the mid-sixties, of a constructive description of the classes of functions that are harmonic in $G$ and continuous on $\overline G$, with given majorant of their modulus of continuity.
Some assertions reflecting the close connection between the geometric structure of $G$ and contour-solid properties of harmonic functions in $G$ are proved.
Bibliography: 23 titles.
Received: 06.04.1987
Bibliographic databases:
UDC: 517.5
MSC: Primary 31A25, 30C85; Secondary 30C75
Language: English
Original paper language: Russian
Citation: V. V. Andrievskii, “A constructive characterization of harmonic functions in domains with quasiconformal boundaries”, Math. USSR-Izv., 34:2 (1990), 441–454
Citation in format AMSBIB
\Bibitem{And89}
\by V.~V.~Andrievskii
\paper A~constructive characterization of harmonic functions in domains with quasiconformal boundaries
\jour Math. USSR-Izv.
\yr 1990
\vol 34
\issue 2
\pages 441--454
\mathnet{http://mi.mathnet.ru/eng/im1249}
\crossref{https://doi.org/10.1070/IM1990v034n02ABEH000661}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=998305}
\zmath{https://zbmath.org/?q=an:0732.31002}
Linking options:
  • https://www.mathnet.ru/eng/im1249
  • https://doi.org/10.1070/IM1990v034n02ABEH000661
  • https://www.mathnet.ru/eng/im/v53/i2/p425
  • This publication is cited in the following 6 articles:
    1. Vladimir V. Andrievskii, Stephan Ruscheweyh, “Remez-Type Inequalities in Terms of Linear Measure”, Comput. Methods Funct. Theory, 5:2 (2006), 347  crossref
    2. Vladimir V. Andrievskii, Hans-Peter Blatt, Springer Monographs in Mathematics, Discrepancy of Signed Measures and Polynomial Approximation, 2002, 1  crossref
    3. V.V. Andrievskii, Handbook of Complex Analysis, 1, Geometric Function Theory, 2002, 493  crossref
    4. T. J. Rivlin, Joseph L. Walsh, 2000, 457  crossref
    5. Vladimir Andrievskii, Hans-Peter Blatt, “Erdős–Turán Type Theorems on Quasiconformal Curves and Arcs”, Journal of Approximation Theory, 97:2 (1999), 334  crossref
    6. Vladimir Andrievskii, “Approximation of analytic functions and their real part”, Constr. Approx, 8:2 (1992), 233  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:519
    Russian version PDF:131
    English version PDF:28
    References:91
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025