Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1990, Volume 35, Issue 3, Pages 629–655
DOI: https://doi.org/10.1070/IM1990v035n03ABEH000720
(Mi im1157)
 

This article is cited in 40 scientific papers (total in 40 papers)

Commuting differential operators of rank 3, and nonlinear differential equations

O. I. Mokhov
References:
Abstract: Complete solutions of the commutation equations of ordinary differential operators are obtained, to which there corresponds a three-dimensional vector bundle of common eigenfunctions over an elliptic curve. The deformation of the commuting pair by the Kadomtsev–Petviashvili equation is studied. The finite-zone solutions of the Kadomtsev–Petviashvili equation of rank 3 and genus 1 are explicitly expressed in terms of functional parameters satisfying a Boussinesq-type system of two evolution equations.
Bibliography: 40 titles.
Received: 27.04.1988
Bibliographic databases:
UDC: 517.9+512.7
MSC: Primary 47E05, 14K07, 14K25; Secondary 25D25, 34B25, 58F37, 14G10, 12F10
Language: English
Original paper language: Russian
Citation: O. I. Mokhov, “Commuting differential operators of rank 3, and nonlinear differential equations”, Math. USSR-Izv., 35:3 (1990), 629–655
Citation in format AMSBIB
\Bibitem{Mok89}
\by O.~I.~Mokhov
\paper Commuting differential operators of rank~3, and nonlinear differential equations
\jour Math. USSR-Izv.
\yr 1990
\vol 35
\issue 3
\pages 629--655
\mathnet{http://mi.mathnet.ru/eng/im1157}
\crossref{https://doi.org/10.1070/IM1990v035n03ABEH000720}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1039965}
\zmath{https://zbmath.org/?q=an:0707.34009}
Linking options:
  • https://www.mathnet.ru/eng/im1157
  • https://doi.org/10.1070/IM1990v035n03ABEH000720
  • https://www.mathnet.ru/eng/im/v53/i6/p1291
  • This publication is cited in the following 40 articles:
    1. J. Guo, A. Zheglov, “On Some Questions around Berest's Conjecture”, Math. Notes, 116:2 (2024), 238–251  mathnet  mathnet  crossref
    2. Leonid Makar-Limanov, “Centralizers of Rank One in the First Weyl Algebra”, SIGMA, 17 (2021), 052, 13 pp.  mathnet  crossref
    3. Gulnara S. Mauleshova, Andrey E. Mironov, “Discretization of Commuting Ordinary Differential Operators of Rank 2 in the Case of Elliptic Spectral Curves”, Proc. Steklov Inst. Math., 310 (2020), 202–213  mathnet  crossref  crossref  isi  elib
    4. Emma Previato, Sonia L. Rueda, Maria-Angeles Zurro, “Commuting Ordinary Differential Operators and the Dixmier Test”, SIGMA, 15 (2019), 101, 23 pp.  mathnet  crossref
    5. Vardan Oganesyan, “Matrix Commuting Differential Operators of Rank 2 and Arbitrary Genus”, International Mathematics Research Notices, 2019:3 (2019), 834  crossref
    6. V. S. Oganesyan, “Commuting Differential Operators of Rank 2 with Rational Coefficients”, Funct. Anal. Appl., 52:3 (2018), 203–213  mathnet  crossref  crossref  mathscinet  isi  elib
    7. V. S. Oganesyan, “Alternative proof of Mironov's results on commuting self-adjoint operators of rank 2”, Siberian Math. J., 59:1 (2018), 102–106  mathnet  crossref  crossref  isi  elib
    8. V. S. Oganesyan, “The AKNS hierarchy and finite-gap Schrödinger potentials”, Theoret. and Math. Phys., 196:1 (2018), 983–995  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. Igor Burban, Alexander Zheglov, “Fourier–Mukai transform on Weierstrass cubics and commuting differential operators”, Int. J. Math., 29:10 (2018), 1850064  crossref
    10. D. A. Pogorelov, A. B. Zheglov, “An algorithm for construction of commuting ordinary differential operators by geometric data”, Lobachevskii J Math, 38:6 (2017), 1075  crossref
    11. V. S. Oganesyan, “Common Eigenfunctions of Commuting Differential Operators of Rank 2”, Math. Notes, 99:2 (2016), 308–311  mathnet  crossref  crossref  mathscinet  isi  elib
    12. V. S. Oganesyan, “Commuting Differential Operators of Rank 2 with Polynomial Coefficients”, Funct. Anal. Appl., 50:1 (2016), 54–61  mathnet  crossref  crossref  mathscinet  isi  elib
    13. V. S. Oganesyan, “On operators of the form x4+u(x) from a pair of commuting differential operators of rank 2 and genus g”, Russian Math. Surveys, 71:3 (2016), 591–593  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. A. E. Mironov, “Self-adjoint commuting differential operators of rank two”, Russian Math. Surveys, 71:4 (2016), 751–779  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. A. B. Zheglov, A. E. Mironov, B. T. Saparbayeva, “Commuting Krichever–Novikov differential operators with polynomial coefficients”, Siberian Math. J., 57:5 (2016), 819–823  mathnet  crossref  crossref  isi  elib  elib
    16. Vardan Oganesyan, “Explicit Characterization of Some Commuting Differential Operators of Rank 2”, Int Math Res Notices, 2016, rnw085  crossref
    17. N Delice, F.W. Nijhoff, S Yoo-Kong, “On elliptic Lax systems on the lattice and a compound theorem for hyperdeterminants”, J. Phys. A: Math. Theor, 48:3 (2015), 035206  crossref
    18. V. S. Oganesyan, “Commuting differential operators of rank 2 and arbitrary genus g with polynomial coefficients”, Russian Math. Surveys, 70:1 (2015), 165–167  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    19. V. N. Davletshina, “Self-Adjoint Commuting Differential Operators of Rank 2 and Their Deformations Given by Soliton Equations”, Math. Notes, 97:3 (2015), 333–340  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    20. A. E. Mironov, B. T. Saparbayeva, “On the eigenfunctions of the one-dimensional Schrödinger operator with a polynomial potential”, Dokl. Math, 91:2 (2015), 171  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:994
    Russian version PDF:317
    English version PDF:35
    References:103
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025