Abstract:
Let B(m,n) be a free periodic group of arbitrary rank m with period n. In this paper, we prove that for all odd numbers n⩾1003 the normalizer of any nontrivial subgroup N of the group B(m,n) coincides with N if the subgroup N is free in the variety of all n-periodic groups. From this, there follows a positive answer for all prime numbers n>997 to the following problem set by S. I. Adian in the Kourovka Notebook: is it true that none of the proper normal subgroups of the group B(m,n) of prime period n>665 is a free periodic group? The obtained result also strengthens a similar result of A. Yu. Ol'shanskii by reducing the boundary of exponent n from n>1078 to n⩾1003. For primes 665<n≤997, the mentioned question is still open.
Citation:
V. S. Atabekyan, “The normalizers of free subgroups in free Burnside groups of odd period n⩾1003”, Fundam. Prikl. Mat., 15:1 (2009), 3–21; J. Math. Sci., 166:6 (2010), 691–703
\Bibitem{Ata09}
\by V.~S.~Atabekyan
\paper The normalizers of free subgroups in free Burnside groups of odd period $n\ge1003$
\jour Fundam. Prikl. Mat.
\yr 2009
\vol 15
\issue 1
\pages 3--21
\mathnet{http://mi.mathnet.ru/fpm1204}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2744943}
\elib{https://elibrary.ru/item.asp?id=15461222}
\transl
\jour J. Math. Sci.
\yr 2010
\vol 166
\issue 6
\pages 691--703
\crossref{https://doi.org/10.1007/s10958-010-9885-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952290427}
Linking options:
https://www.mathnet.ru/eng/fpm1204
https://www.mathnet.ru/eng/fpm/v15/i1/p3
This publication is cited in the following 12 articles:
S. I. Adian, V. S. Atabekyan, “Normal Automorphisms of Free Groups of Infinitely Based Varieties”, Math. Notes, 108:2 (2020), 149–154
V. S. Atabekyan, “Automorphism groups and endomorphism semigroups of groups B(m,n)”, Algebra and Logic, 54:1 (2015), 58–62
A. E. Grigoryan, “Inner automorphisms of non-commutative analogues of the additive group of rational numbers”, Uch. zapiski EGU, ser. Fizika i Matematika, 2015, no. 1, 12–14
V. S. Atabekyan, “The automorphism tower problem for free periodic groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2013, no. 2, 3–7
A. L. Gevorgyan, “On automorphisms of periodic products of groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2012, no. 2, 3–9
V. S. Atabekyan, “Normal automorphisms of free Burnside groups”, Izv. Math., 75:2 (2011), 223–237
Pahlevanyan A.S., Rostami H.R., “On automorphisms and embeddings of free periodic groups”, J. Contemp. Math. Anal., 46:2 (2011), 106–112
V. S. Atabekyan, “On normal subgroups in the periodic products of S. I. Adian”, Proc. Steklov Inst. Math., 274 (2011), 9–24
V. S. Atabekyan, “Nonunitarizable Periodic Groups”, Math. Notes, 87:6 (2010), 908–911
S. I. Adian, “The Burnside problem and related topics”, Russian Math. Surveys, 65:5 (2010), 805–855
A. S. Pahlevanyan, “Independent pairs in free Burnside groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2010, no. 2, 58–62
H. R. Rostami, “Non-unitarizable groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2010, no. 3, 40–43