Loading [MathJax]/jax/output/SVG/config.js
Fizika Goreniya i Vzryva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Goreniya i Vzryva:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Goreniya i Vzryva, 2021, Volume 57, Issue 6, Pages 20–31
DOI: https://doi.org/10.15372/FGV20210603
(Mi fgv798)
 

This article is cited in 9 scientific papers (total in 9 papers)

Combustion of large monolithic titanium particles in air. I. Experimental techniques, burning time and fragmentation modes

O. G. Glotovab, N. S. Belousovaab, G. S. Surodina

a Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, 630090, Novosibirsk, Russia
b Novosibirsk State Technical University, 630073, Novosibirsk, Russia
Citations (9)
Abstract: A technique for obtaining large burning monolithic titanium particles is described. The combustion of particles with a diameter of 120–540 $\mu$m in free fall in air at atmospheric pressure is investigated. The burning time and the characteristic time of the beginning and end of fragmentation as a function of particle diameter are determined by processing video recordings of combustion of more than 250 particles. Two fragmentation modes are described. It is found that their occurrence depends on the diameter of the burning particle. The boundary particle size separating the modes is determined. It is shown that the fragmentation regularities and characteristic times for titanium agglomerates and monolithic particles of the indicated sizes differ slightly.
Keywords: titanium particle, titanium agglomerate, diameter, combustion in air, fragmentation, “star” fragmentation mode, “spruce branch” fragmentation mode, burning time, fragmentation time.
Funding agency Grant number
Russian Foundation for Basic Research 19-03-00294
20-33-90208
Received: 21.12.2020
Revised: 10.02.2021
Accepted: 21.04.2021
English version:
Combustion, Explosion and Shock Waves, 2021, Volume 57, Issue 6, Pages 651–662
DOI: https://doi.org/10.1134/S0010508221060034
Bibliographic databases:
Document Type: Article
UDC: 536.46
Language: Russian
Citation: O. G. Glotov, N. S. Belousova, G. S. Surodin, “Combustion of large monolithic titanium particles in air. I. Experimental techniques, burning time and fragmentation modes”, Fizika Goreniya i Vzryva, 57:6 (2021), 20–31; Combustion, Explosion and Shock Waves, 57:6 (2021), 651–662
Citation in format AMSBIB
\Bibitem{GloBelSur21}
\by O.~G.~Glotov, N.~S.~Belousova, G.~S.~Surodin
\paper Combustion of large monolithic titanium particles in air. I. Experimental techniques, burning time and fragmentation modes
\jour Fizika Goreniya i Vzryva
\yr 2021
\vol 57
\issue 6
\pages 20--31
\mathnet{http://mi.mathnet.ru/fgv798}
\crossref{https://doi.org/10.15372/FGV20210603}
\elib{https://elibrary.ru/item.asp?id=47167615}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 2021
\vol 57
\issue 6
\pages 651--662
\crossref{https://doi.org/10.1134/S0010508221060034}
Linking options:
  • https://www.mathnet.ru/eng/fgv798
  • https://www.mathnet.ru/eng/fgv/v57/i6/p20
    Cycle of papers
    This publication is cited in the following 9 articles:
    1. Yang Liu, Kaili Liang, Keqin Zhang, Bowen Du, Lishuang Hu, Zhilei Yuan, Jianren Zhang, Yuewen Lu, Qi Yu, Zhixing Lv, “Thermal Decomposition and Combustion Performance of Energetic Materials/Ti Systems”, Korean J. Chem. Eng., 2025  crossref
    2. O. V. Lapshin, O. A. Shkoda, “Synthesis of titanium nitride during double mechanical activation of titanium: in argon and in nitrogen”, Combustion, Explosion and Shock Waves, 60:1 (2024), 84–91  mathnet  crossref  crossref  elib
    3. N. S. Belousova, O. G. Glotov, I. V. Sorokin, “Combustion of composite propellants with titanium”, J. Appl. Mech. Tech. Phys., 64:1 (2023), 18–22  mathnet  crossref  crossref  elib
    4. Andrew W. Marsh, Andy X. Zheng, Gwendolyn T. Wang, Michael L. Hobbs, Sean P. Kearney, Yi Chen Mazumdar, “Evolution of titanium particle combustion in potassium perchlorate and air”, Combustion and Flame, 253 (2023), 112787  crossref
    5. O.G. Glotov, “Screening of metal fuels for use in composite propellants for ramjets”, Progress in Aerospace Sciences, 143 (2023), 100954  crossref
    6. Weidong Zhong, Daolun Liang, Hong Zhong, Mengli Li, Kerun Chen, Zhiyuan Niu, Yang Wang, Dekui Shen, “Combustion behavior of discrete magnesium diboride particles in the state of motion”, Acta Astronautica, 205 (2023), 119  crossref
    7. Igor Altman, Michelle Pantoya, “Comprehending Metal Particle Combustion: a Path Forward”, Propellants Explo Pyrotec, 47:7 (2022)  crossref
    8. O. G. Glotov, N. S. Belousova, G. S. Surodin, “Combustion of large monolithic titanium particles in air. II. Characteristics of condensed combustion products”, Combustion, Explosion and Shock Waves, 58:6 (2022), 674–687  mathnet  mathnet  crossref  crossref
    9. N. S. Belousova, O. G. Glotov, “Laws of motion and aerodynamic drag coefficient for large titanium particles burning in air”, Thermophys. Aeromech., 29:4 (2022), 557  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Goreniya i Vzryva Fizika Goreniya i Vzryva
    Statistics & downloads:
    Abstract page:68
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025