Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2011, Volume 45, Issue 3, Pages 41–54
DOI: https://doi.org/10.4213/faa3045
(Mi faa3045)
 

This article is cited in 24 scientific papers (total in 24 papers)

Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations

Yu. S. Ilyashenkoabcd, D. A. Ryzhove, D. A. Filimonovf

a Moscow State University
b Independent University of Moscow
c Steklov Mathematical Institute
d Cornell University, USA
e Chebyshev Laboratory, Saint-Petersburg State University
f 5.Moscow State University of Railway Engineering
References:
Abstract: In this work we study dynamical systems on the torus modeling Josephson junctions in the theory of superconductivity, and also perturbations of these systems. We show that, in the family of equations that describe resistively shunted Josephson junctions, phase lock occurs only for integer rotation numbers and propose a simple method for calculating the boundaries of the corresponding Arnold tongues. This part is a simplification of known results about the quantization of rotation number [4]. Moreover, we show that the quantization of rotation number only at integer points is a phenomenon of infinite codimension. Namely, there is an infinite set of independent perturbations of systems that give rise to countably many nondiscretely located phase-locking regions.
Keywords: differential equations on the torus, perturbation theory, Josephson effect, phase lock, quantization of rotation number, Arnold tongues.
Received: 03.12.2010
English version:
Functional Analysis and Its Applications, 2011, Volume 45, Issue 3, Pages 192–203
DOI: https://doi.org/10.1007/s10688-011-0023-8
Bibliographic databases:
Document Type: Article
UDC: 517.923+517.925.54
Language: Russian
Citation: Yu. S. Ilyashenko, D. A. Ryzhov, D. A. Filimonov, “Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations”, Funktsional. Anal. i Prilozhen., 45:3 (2011), 41–54; Funct. Anal. Appl., 45:3 (2011), 192–203
Citation in format AMSBIB
\Bibitem{IlyRyzFil11}
\by Yu.~S.~Ilyashenko, D.~A.~Ryzhov, D.~A.~Filimonov
\paper Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 3
\pages 41--54
\mathnet{http://mi.mathnet.ru/faa3045}
\crossref{https://doi.org/10.4213/faa3045}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2883238}
\zmath{https://zbmath.org/?q=an:1271.34052}
\elib{https://elibrary.ru/item.asp?id=20730626}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 3
\pages 192--203
\crossref{https://doi.org/10.1007/s10688-011-0023-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298226200004}
\elib{https://elibrary.ru/item.asp?id=18008005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053482678}
Linking options:
  • https://www.mathnet.ru/eng/faa3045
  • https://doi.org/10.4213/faa3045
  • https://www.mathnet.ru/eng/faa/v45/i3/p41
  • This publication is cited in the following 24 articles:
    1. Alexey A. Glutsyuk, “Extended Model of Josephson Junction, Linear Systems with Polynomial Solutions, Determinantal Surfaces, and Painlevé III Equations”, Proc. Steklov Inst. Math., 326 (2024), 90–132  mathnet  crossref  crossref
    2. Alexey Glutsyuk, “On germs of constriction curves in model of overdamped Josephson junction, dynamical isomonodromic foliation and Painlevé 3 equation”, Mosc. Math. J., 23:4 (2023), 479–513  mathnet
    3. Y Bibilo, A A Glutsyuk, “On families of constrictions in model of overdamped Josephson junction and Painlevé 3 equation*”, Nonlinearity, 35:10 (2022), 5427  crossref
    4. Julian M. I. Newman, Maxime Lucas, Aneta Stefanovska, Understanding Complex Systems, Physics of Biological Oscillators, 2021, 111  crossref
    5. J. Newman, M. Lucas, A. Stefanovska, “Stabilization of cyclic processes by slowly varying forcing”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 31:12 (2021)  crossref
    6. Glutsyuk A.A. Netay I.V., “On Spectral Curves and Complexified Boundaries of the Phase-Lock Areas in a Model of Josephson Junction”, J. Dyn. Control Syst., 26:4 (2020), 785–820  crossref  mathscinet  isi
    7. Chen Chris Gong, Ralf Toenjes, Arkady Pikovsky, “Coupled Möbius maps as a tool to model Kuramoto phase synchronization”, Phys. Rev. E, 102:2 (2020)  crossref
    8. Ivan A Bizyaev, Ivan S Mamaev, “Dynamics of the nonholonomic Suslov problem under periodic control: unbounded speedup and strange attractors”, J. Phys. A: Math. Theor., 53:18 (2020), 185701  crossref
    9. Borisov A. Mamaev I., “Rigid Body Dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520  mathscinet  isi
    10. S. I. Tertychnyi, “Solution space monodromy of a special double confluent Heun equation and its applications”, Theoret. and Math. Phys., 201:1 (2019), 1426–1441  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. A. A. Glutsyuk, “On Constrictions of Phase-Lock Areas in Model of Overdamped Josephson Effect and Transition Matrix of the Double-Confluent Heun Equation”, J Dyn Control Syst, 25:3 (2019), 323  crossref
    12. Xu C., Boccaletti S., Guan Sh., Zheng Zh., “Origin of Bellerophon States in Globally Coupled Phase Oscillators”, Phys. Rev. E, 98:5 (2018), 050202  crossref  mathscinet  isi
    13. V. M. Buchstaber, A. A. Glutsyuk, “On monodromy eigenfunctions of Heun equations and boundaries of phase-lock areas in a model of overdamped Josephson effect”, Proc. Steklov Inst. Math., 297 (2017), 50–89  mathnet  crossref  crossref  mathscinet  isi  elib
    14. Glutsyuk A., Rybnikov L., “On Families of Differential Equations on Two-Torus With All Phase-Lock Areas”, Nonlinearity, 30:1 (2017), 61–72  crossref  mathscinet  zmath  isi  scopus
    15. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Sluchai Gessa–Appelrota i kvantovanie chisla vrascheniya”, Nelineinaya dinam., 13:3 (2017), 433–452  mathnet  crossref  mathscinet  elib
    16. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Hess–Appelrot Case and Quantization of the Rotation Number”, Regul. Chaotic Dyn., 22:2 (2017), 180–196  mathnet  crossref  mathscinet  zmath
    17. Buchstaber V.M. Glutsyuk A.A., “On determinants of modified Bessel functions and entire solutions of double confluent Heun equations”, Nonlinearity, 29:12 (2016), 3857–3870  crossref  mathscinet  zmath  isi  elib  scopus
    18. V. M. Buchstaber, S. I. Tertychnyi, “Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction”, Theoret. and Math. Phys., 182:3 (2015), 329–355  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    19. A. Klimenko, O. Romaskevich, “Asymptotic properties of Arnold tongues and Josephson effect”, Mosc. Math. J., 14:2 (2014), 367–384  mathnet  crossref  mathscinet
    20. A. A. Glutsyuk, V. A. Kleptsyn, D. A. Filimonov, I. V. Shchurov, “On the Adjacency Quantization in an Equation Modeling the Josephson Effect”, Funct. Anal. Appl., 48:4 (2014), 272–285  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:956
    Full-text PDF :319
    References:102
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025