Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2017, Volume 13, Number 3, Pages 433–452
DOI: https://doi.org/10.20537/nd1703010
(Mi nd576)
 

This article is cited in 8 scientific papers (total in 8 papers)

Translated papers

The Hess–Appelrot case and quantization of the rotation number

I. A. Bizyaev, A. V. Borisov, I. S. Mamaev

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (545 kB) Citations (8)
References:
Abstract: This paper is concerned with the Hess case in the Euler–Poisson equations and with its generalization on the pencil of Poisson brackets. It is shown that in this case the problem reduces to investigating the vector field on a torus and that the graph showing the dependence of the rotation number on parameters has horizontal segments (limit cycles) only for integer values of the rotation number. In addition, an example of a Hamiltonian system is given which possesses an invariant submanifold (similar to the Hess case), but on which the dependence of the rotation number on parameters is a Cantor ladder.
Keywords: invariant submanifold, rotation number, Cantor ladder, limit cycles.
Funding agency Grant number
Russian Science Foundation 14-50-00005
Received: 02.02.2017
Accepted: 06.03.2017
English version:
Regular and Chaotic Dynamics, 2017, Volume 22, Issue 2, Pages 180–196
DOI: https://doi.org/10.1134/S156035471702006X
Bibliographic databases:
Document Type: Article
UDC: 517.925
MSC: 70E17, 37E45
Language: Russian
Citation: I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The Hess–Appelrot case and quantization of the rotation number”, Nelin. Dinam., 13:3 (2017), 433–452; Regular and Chaotic Dynamics, 22:2 (2017), 180–196
Citation in format AMSBIB
\Bibitem{BizBorMam17}
\by I.~A.~Bizyaev, A.~V.~Borisov, I.~S.~Mamaev
\paper The Hess–Appelrot case and quantization of the rotation number
\jour Nelin. Dinam.
\yr 2017
\vol 13
\issue 3
\pages 433--452
\mathnet{http://mi.mathnet.ru/nd576}
\crossref{https://doi.org/10.20537/nd1703010}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3658423}
\elib{https://elibrary.ru/item.asp?id=29993271}
\transl
\jour Regular and Chaotic Dynamics
\yr 2017
\vol 22
\issue 2
\pages 180--196
\crossref{https://doi.org/10.1134/S156035471702006X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85031088531}
Linking options:
  • https://www.mathnet.ru/eng/nd576
  • https://www.mathnet.ru/eng/nd/v13/i3/p433
  • This publication is cited in the following 8 articles:
    1. Y Bibilo, A A Glutsyuk, “On families of constrictions in model of overdamped Josephson junction and Painlevé 3 equation*”, Nonlinearity, 35:10 (2022), 5427  crossref
    2. A. A. Burov, “Linear invariant relations in the problem of the motion of a bundle of two bodies”, Dokl. Phys., 65:4 (2020), 147–148  crossref  isi  scopus
    3. Ivan A Bizyaev, Ivan S Mamaev, “Dynamics of the nonholonomic Suslov problem under periodic control: unbounded speedup and strange attractors”, J. Phys. A: Math. Theor., 53:18 (2020), 185701  crossref
    4. Alexander A. Burov, Anna D. Guerman, Vasily I. Nikonov, “Asymptotic Invariant Surfaces for Non-Autonomous Pendulum-Type Systems”, Regul. Chaotic Dyn., 25:1 (2020), 121–130  mathnet  crossref  isi  scopus
    5. Alexey Borisov, Alexander Kilin, Ivan Mamaev, “Invariant Submanifolds of Genus 5 and a Cantor Staircase in the Nonholonomic Model of a Snakeboard”, Int. J. Bifurcation Chaos, 29:03 (2019), 1930008  crossref
    6. Vyacheslav P. Kruglov, Sergey P. Kuznetsov, “Topaj – Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators”, Regul. Chaotic Dyn., 24:6 (2019), 725–738  mathnet  crossref  isi  scopus
    7. Henryk Żoła̧dek, “Perturbations of the Hess–Appelrot and the Lagrange cases in the rigid body dynamics”, Journal of Geometry and Physics, 142 (2019), 121  crossref
    8. V. Yu. Ol'shanskii, “Partial linear integrals of the Poincaré–Zhukovskii equations (the general case)”, Journal of Applied Mathematics and Mechanics, 81:4 (2017), 270  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :93
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025