Citation:
V. Yu. Novokshenov, “Movable poles of the solutions of Painleve's equation of the third kind and their relation with mathieu functions”, Funktsional. Anal. i Prilozhen., 20:2 (1986), 38–49; Funct. Anal. Appl., 20:2 (1986), 113–123
\Bibitem{Nov86}
\by V.~Yu.~Novokshenov
\paper Movable poles of the solutions of Painleve's equation of the third kind and their relation with mathieu functions
\jour Funktsional. Anal. i Prilozhen.
\yr 1986
\vol 20
\issue 2
\pages 38--49
\mathnet{http://mi.mathnet.ru/faa1270}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=847137}
\zmath{https://zbmath.org/?q=an:0616.34022}
\transl
\jour Funct. Anal. Appl.
\yr 1986
\vol 20
\issue 2
\pages 113--123
\crossref{https://doi.org/10.1007/BF01077265}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986F457800005}
Linking options:
https://www.mathnet.ru/eng/faa1270
https://www.mathnet.ru/eng/faa/v20/i2/p38
This publication is cited in the following 12 articles:
Alexander R. Its, Kenta Miyahara, Maxim L. Yattselev, “The non-linear steepest descent approach to the singular asymptotics of the sinh-Gordon reduction of the Painlevé III equation”, Lett Math Phys, 115:1 (2025)
Mikhail Bershtein, Pavlo Gavrylenko, Alba Grassi, “Quantum Spectral Problems and Isomonodromic Deformations”, Commun. Math. Phys., 393:1 (2022), 347
O. Lisovyy, A. Naidiuk, “Accessory parameters in confluent Heun equations and classical irregular conformal blocks”, Lett Math Phys, 111:6 (2021)
Alba Grassi, Jie Gu, Marcos Mariño, “Non-perturbative approaches to the quantum Seiberg-Witten curve”, J. High Energ. Phys., 2020:7 (2020)
Pavlo Gavrylenko, Andrei Marshakov, Artem Stoyan, “Irregular conformal blocks, Painlevé III and the blow-up equations”, J. High Energ. Phys., 2020:12 (2020)
Gerald V Dunne, “Resurgence, Painlevé equations and conformal blocks”, J. Phys. A: Math. Theor., 52:46 (2019), 463001
Ovidiu Costin, Gerald V Dunne, “Resurgent extrapolation: rebuilding a function from asymptotic data. Painlevé I”, J. Phys. A: Math. Theor., 52:44 (2019), 445205
E. V. Ponomareva, “Classification of double flag varieties of complexity 0 and 1”, Izv. Math., 77:5 (2013), 998–1020
Sergei L. Lukyanov, “Critical values of the Yang–Yang functional in the quantum sine-Gordon model”, Nuclear Physics B, 853:2 (2011), 475
A. V. Kitaev, “Elliptic asymptotics of the first and the second Painlevé transcendents”, Russian Math. Surveys, 49:1 (1994), 81–150
A. E. Milne, P. A. Clarkson, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, 1993, 341
P. A. Clarkson, J. B. McLeod, NATO ASI Series, 278, Painlevé Transcendents, 1992, 1