Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1994, Volume 49, Issue 1, Pages 81–150
DOI: https://doi.org/10.1070/RM1994v049n01ABEH002133
(Mi rm1154)
 

This article is cited in 26 scientific papers (total in 26 papers)

Elliptic asymptotics of the first and the second Painlevé transcendents

A. V. Kitaev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Received: 12.07.1993
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 34M55, 34Exx
Language: English
Original paper language: Russian
Citation: A. V. Kitaev, “Elliptic asymptotics of the first and the second Painlevé transcendents”, Russian Math. Surveys, 49:1 (1994), 81–150
Citation in format AMSBIB
\Bibitem{Kit94}
\by A.~V.~Kitaev
\paper Elliptic asymptotics of the first and the second Painlev\'e transcendents
\jour Russian Math. Surveys
\yr 1994
\vol 49
\issue 1
\pages 81--150
\mathnet{http://mi.mathnet.ru/eng/rm1154}
\crossref{https://doi.org/10.1070/RM1994v049n01ABEH002133}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1307131}
\zmath{https://zbmath.org/?q=an:0829.34040}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994RuMaS..49...81K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QL92900002}
Linking options:
  • https://www.mathnet.ru/eng/rm1154
  • https://doi.org/10.1070/RM1994v049n01ABEH002133
  • https://www.mathnet.ru/eng/rm/v49/i1/p77
  • This publication is cited in the following 26 articles:
    1. Wei Cheng, “A note on a q -difference equation related to Riccati equations”, Journal of Difference Equations and Applications, 2024, 1  crossref
    2. Shun SHIMOMURA, “TWO ERROR BOUNDS OF THE ELLIPTIC ASYMPTOTICS FOR THE FIFTH PAINLEVÉ TRANSCENDENTS”, Kyushu J. Math., 78:2 (2024), 487  crossref
    3. Shun SHIMOMURA, “CORRIGENDUM: ELLIPTIC ASYMPTOTIC REPRESENTATION OF THE FIFTH PAINLEVÉ TRANSCENDENTS”, Kyushu J. Math., 77:1 (2023), 191  crossref
    4. Ovidiu Costin, Gerald V. Dunne, “Uniformization and Constructive Analytic Continuation of Taylor Series”, Commun. Math. Phys., 392:3 (2022), 863  crossref
    5. Shun SHIMOMURA, “ELLIPTIC ASYMPTOTIC REPRESENTATION OF THE FIFTH PAINLEVÉ TRANSCENDENTS”, Kyushu J. Math., 76:1 (2022), 43  crossref
    6. Shimomura Sh., “On a General Singular Solution of the Fifth Painleve Equation Along the Positive Real Axis”, Comput. Methods Funct. Theory, 21:4 (2021), 633–651  crossref  isi
    7. Kohei Iwaki, “2-Parameter τ-Function for the First Painlevé Equation: Topological Recursion and Direct Monodromy Problem via Exact WKB Analysis”, Commun. Math. Phys., 377:2 (2020), 1047  crossref
    8. Ovidiu Costin, Gerald V Dunne, “Resurgent extrapolation: rebuilding a function from asymptotic data. Painlevé I”, J. Phys. A: Math. Theor., 52:44 (2019), 445205  crossref
    9. Nalini Joshi, Elynor Liu, “Asymptotic behaviours given by elliptic functions in PIPV”, Nonlinearity, 31:8 (2018), 3726  crossref
    10. Ilia Yu. Gaiur, Nikolay A. Kudryashov, “Weak Nonlinear Asymptotic Solutions for the Fourth Order Analogue of the Second Painlevé Equation”, Regul. Chaotic Dyn., 22:3 (2017), 266–271  mathnet  crossref  mathscinet
    11. A. V. Vasilyev, A. V. Parusnikova, “On various approaches to asymptotics of solutions to the third Painlevé equation in a neighborhood of infinity”, J. Math. Sci. (N. Y.), 241:3 (2019), 318–326  mathnet  mathnet  crossref
    12. I Yu Gaiur, N A Kudryashov, “Asymptotic solutions of a fourth—order analogue for the Painlevé equations”, J. Phys.: Conf. Ser., 788 (2017), 012011  crossref
    13. O. Costin, R. D. Costin, M. Huang, “Tronquée Solutions of the Painlevé Equation PI”, Constr Approx, 2015  crossref
    14. N. Joshi, C. J. Lustri, “Stokes phenomena in discrete Painlevé I”, Proc. R. Soc. A., 471:2177 (2015), 20140874  crossref
    15. Howes P., Joshi N., “Global Asymptotics of the Second Painlevé Equation in Okamoto's Space”, Constr. Approx., 39:1, SI (2014), 11–41  crossref  isi
    16. Davide Masoero, “Painlevé I, Coverings of the Sphere and Belyi Functions”, Constr Approx, 2013  crossref
    17. A M Grundland, S Post, “Soliton surfaces via a zero-curvature representation of differential equations”, J. Phys. A: Math. Theor, 45:11 (2012), 115204  crossref
    18. Davide Masoero, “Poles of integrále tritronquée and anharmonic oscillators. A WKB approach”, J Phys A Math Theor, 43:9 (2010), 095201  crossref  zmath  isi  elib
    19. Clarkson P.A., “Asymptotics of the second Painlevé equation”, Special Functions and Orthogonal Polynomials, Contemporary Mathematics Series, 471, 2008, 69–83  isi
    20. Shun Shimomura, “A class of differential equations of PI-type with the quasi-Painlevé property”, Annali di Matematica, 186:2 (2007), 267  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:711
    Russian version PDF:300
    English version PDF:62
    References:89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025