\Bibitem{Kit94}
\by A.~V.~Kitaev
\paper Elliptic asymptotics of the first and the second Painlev\'e transcendents
\jour Russian Math. Surveys
\yr 1994
\vol 49
\issue 1
\pages 81--150
\mathnet{http://mi.mathnet.ru/eng/rm1154}
\crossref{https://doi.org/10.1070/RM1994v049n01ABEH002133}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1307131}
\zmath{https://zbmath.org/?q=an:0829.34040}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994RuMaS..49...81K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QL92900002}
Linking options:
https://www.mathnet.ru/eng/rm1154
https://doi.org/10.1070/RM1994v049n01ABEH002133
https://www.mathnet.ru/eng/rm/v49/i1/p77
This publication is cited in the following 26 articles:
Wei Cheng, “A note on a
q
-difference equation related to Riccati equations”, Journal of Difference Equations and Applications, 2024, 1
Shun SHIMOMURA, “TWO ERROR BOUNDS OF THE ELLIPTIC ASYMPTOTICS FOR THE FIFTH PAINLEVÉ TRANSCENDENTS”, Kyushu J. Math., 78:2 (2024), 487
Shun SHIMOMURA, “CORRIGENDUM: ELLIPTIC ASYMPTOTIC REPRESENTATION OF THE FIFTH PAINLEVÉ TRANSCENDENTS”, Kyushu J. Math., 77:1 (2023), 191
Ovidiu Costin, Gerald V. Dunne, “Uniformization and Constructive Analytic Continuation of Taylor Series”, Commun. Math. Phys., 392:3 (2022), 863
Shun SHIMOMURA, “ELLIPTIC ASYMPTOTIC REPRESENTATION OF THE FIFTH PAINLEVÉ TRANSCENDENTS”, Kyushu J. Math., 76:1 (2022), 43
Shimomura Sh., “On a General Singular Solution of the Fifth Painleve Equation Along the Positive Real Axis”, Comput. Methods Funct. Theory, 21:4 (2021), 633–651
Kohei Iwaki, “2-Parameter τ-Function for the First Painlevé Equation: Topological Recursion and Direct Monodromy Problem via Exact WKB Analysis”, Commun. Math. Phys., 377:2 (2020), 1047
Ovidiu Costin, Gerald V Dunne, “Resurgent extrapolation: rebuilding a function from asymptotic data. Painlevé I”, J. Phys. A: Math. Theor., 52:44 (2019), 445205
Nalini Joshi, Elynor Liu, “Asymptotic behaviours given by elliptic functions in PI –PV”, Nonlinearity, 31:8 (2018), 3726
Ilia Yu. Gaiur, Nikolay A. Kudryashov, “Weak Nonlinear Asymptotic Solutions for the Fourth Order Analogue of the Second Painlevé Equation”, Regul. Chaotic Dyn., 22:3 (2017), 266–271
A. V. Vasilyev, A. V. Parusnikova, “On various approaches to asymptotics of solutions to the third Painlevé equation in a neighborhood of infinity”, J. Math. Sci. (N. Y.), 241:3 (2019), 318–326
I Yu Gaiur, N A Kudryashov, “Asymptotic solutions of a fourth—order analogue for the Painlevé equations”, J. Phys.: Conf. Ser., 788 (2017), 012011
O. Costin, R. D. Costin, M. Huang, “Tronquée Solutions of the Painlevé Equation PI”, Constr Approx, 2015
N. Joshi, C. J. Lustri, “Stokes phenomena in discrete Painlevé I”, Proc. R. Soc. A., 471:2177 (2015), 20140874
Howes P., Joshi N., “Global Asymptotics of the Second Painlevé Equation in Okamoto's Space”, Constr. Approx., 39:1, SI (2014), 11–41
Davide Masoero, “Painlevé I, Coverings of the Sphere and Belyi Functions”, Constr Approx, 2013
A M Grundland, S Post, “Soliton surfaces via a zero-curvature representation of differential equations”, J. Phys. A: Math. Theor, 45:11 (2012), 115204
Davide Masoero, “Poles of integrále tritronquée and anharmonic oscillators. A WKB approach”, J Phys A Math Theor, 43:9 (2010), 095201
Clarkson P.A., “Asymptotics of the second Painlevé equation”, Special Functions and Orthogonal Polynomials, Contemporary Mathematics Series, 471, 2008, 69–83
Shun Shimomura, “A class of differential equations of PI-type with the quasi-Painlevé property”, Annali di Matematica, 186:2 (2007), 267