Loading [MathJax]/jax/output/SVG/config.js
Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 493, Pages 9–12
DOI: https://doi.org/10.31857/S2686954320040207
(Mi danma86)
 

This article is cited in 12 scientific papers (total in 12 papers)

MATHEMATICS

Topological modeling of integrable systems by billiards: realization of numerical invariants

V. V. Vedyushkina, V. A. Kibkalo, A. T. Fomenko

Lomonosov Moscow State University, Moscow, Russian Federation
References:
Abstract: A local version of A.T. Fomenko's conjecture on modeling of integrable systems by billiards is formulated. It is proved that billiard systems realize arbitrary numerical marks of Fomenko–Zieschang invariants. Thus, numerical marks are not a priori a topological obstacle to the realization of the Liouville foliation of integrable systems by billiards.
Keywords: integrability, Hamiltonian system, billiard, Fomenko–Zieschang invariant, CW complex.
Funding agency Grant number
Russian Foundation for Basic Research 19–01–00775-a
This work was supported by the Russian Foundation for Basic Research, project no. 19-01-00775-a.
Received: 18.05.2020
Revised: 18.05.2020
Accepted: 04.06.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 1, Pages 269–271
DOI: https://doi.org/10.1134/S1064562420040201
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
Language: Russian
Citation: V. V. Vedyushkina, V. A. Kibkalo, A. T. Fomenko, “Topological modeling of integrable systems by billiards: realization of numerical invariants”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 9–12; Dokl. Math., 102:1 (2020), 269–271
Citation in format AMSBIB
\Bibitem{VedKibFom20}
\by V.~V.~Vedyushkina, V.~A.~Kibkalo, A.~T.~Fomenko
\paper Topological modeling of integrable systems by billiards: realization of numerical invariants
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 493
\pages 9--12
\mathnet{http://mi.mathnet.ru/danma86}
\crossref{https://doi.org/10.31857/S2686954320040207}
\zmath{https://zbmath.org/?q=an:7424607}
\elib{https://elibrary.ru/item.asp?id=43795337}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 1
\pages 269--271
\crossref{https://doi.org/10.1134/S1064562420040201}
Linking options:
  • https://www.mathnet.ru/eng/danma86
  • https://www.mathnet.ru/eng/danma/v493/p9
  • This publication is cited in the following 12 articles:
    1. V. V. Vedyushkina, S. E. Pustovoitov, “Classification of Liouville foliations of integrable topological billiards in magnetic fields”, Sb. Math., 214:2 (2023), 166–196  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. V. N. Zav'yalov, “Billiard with slipping by an arbitrary rational angle”, Sb. Math., 214:9 (2023), 1191–1211  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. A. A. Kuznetsova, “Modeling of degenerate peculiarities of integrable billiard systems by billiard books”, Moscow University Mathematics Bulletin, 78:5 (2023), 207–215  mathnet  crossref  crossref  elib
    5. A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. V. V. Vedyushkina, V. N. Zav'yalov, “Realization of geodesic flows with a linear first integral by billiards with slipping”, Sb. Math., 213:12 (2022), 1645–1664  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. A. T. Fomenko, V. A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, European Journal of Mathematics, 8:4 (2022), 1392  crossref  mathscinet
    9. V. V. Vedyushkina, V. A. Kibkalo, “Billiardnye knizhki maloi slozhnosti i realizatsiya sloenii Liuvillya integriruemykh sistem”, Chebyshevskii sb., 23:1 (2022), 53–82  mathnet  crossref
    10. A. T. Fomenko, V. V. Vedyushkina, “Billiards with Changing Geometry and Their Connection with the Implementation of the Zhukovsky and Kovalevskaya Cases”, Russ. J. Math. Phys., 28:3 (2021), 317  crossref  mathscinet
    11. V. V. Vedyushkina, “Local modeling of Liouville foliations by billiards: implementation of edge invariants”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 76:2 (2021), 60–64  mathnet  mathnet  crossref  mathscinet  isi  scopus
    12. A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville Foliations of Topological Billiards with Slipping”, Russ. J. Math. Phys., 28:1 (2021), 37  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :67
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025