Loading [MathJax]/jax/output/SVG/config.js
Doklady Akademii Nauk SSSR
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Akademii Nauk SSSR, 1965, Volume 165, Number 3, Pages 471–473 (Mi dan31825)  

This article is cited in 19 scientific papers (total in 19 papers)

MATHEMATICS

A generalization of the concept of a Lie algebra

A. Blokh

Moscow State (V. I. Lenin) Pedagogical Institute
Presented: P. S. Novikov
Received: 09.04.1965
Bibliographic databases:
Document Type: Article
UDC: 512.934
Language: Russian
Citation: A. Blokh, “A generalization of the concept of a Lie algebra”, Dokl. Akad. Nauk SSSR, 165:3 (1965), 471–473
Citation in format AMSBIB
\Bibitem{Blo65}
\by A.~Blokh
\paper A generalization of the concept of a Lie algebra
\jour Dokl. Akad. Nauk SSSR
\yr 1965
\vol 165
\issue 3
\pages 471--473
\mathnet{http://mi.mathnet.ru/dan31825}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0193114}
\zmath{https://zbmath.org/?q=an:0139.25702}
Linking options:
  • https://www.mathnet.ru/eng/dan31825
  • https://www.mathnet.ru/eng/dan/v165/i3/p471
  • This publication is cited in the following 19 articles:
    1. J. G. Rodríguez-Nieto, O. P. Salazar-Díaz, R. Velásquez, “The structure of g-digroup actions and representation theory”, Algebra Discrete Math., 32:1 (2021), 103–126  mathnet  crossref
    2. L. A. Kurdachenko, M. M. Semko, V. S. Yashchuk, “On the structure of the algebra of derivations of cyclic Leibniz algebras”, Algebra Discrete Math., 32:2 (2021), 241–252  mathnet  crossref
    3. U. Kh. Mamadaliev, B. A. Omirov, “Cohomologically rigid solvable leibniz algebras with nilradical of arbitrary characteristic sequence”, Siberian Math. J., 61:3 (2020), 504–515  mathnet  crossref  crossref  isi  elib
    4. O. Bezushchak, B. Oliynyk, “Morita equivalent unital locally matrix algebras”, Algebra Discrete Math., 29:2 (2020), 173–179  mathnet  crossref
    5. V. A. Shupordia, L. A. Kurdachenko, N. N. Semko, “On the structure of Leibniz algebras whose subalgebras are ideals or core-free”, Algebra Discrete Math., 29:2 (2020), 180–194  mathnet  crossref
    6. Viktoriia S. Yashchuk, “On some Leibniz algebras having small dimension”, Algebra Discrete Math., 27:2 (2019), 292–308  mathnet
    7. Vladimir V. Kirichenko, Leonid A. Kurdachenko, Aleksandr A. Pypka, Igor Ya. Subbotin, “Some aspects of Leibniz algebra theory”, Algebra Discrete Math., 24:1 (2017), 1–33  mathnet
    8. V. V. Gorbatsevich, “On liezation of the Leibniz algebras and its applications”, Russian Math. (Iz. VUZ), 60:4 (2016), 10–16  mathnet  crossref  isi
    9. L. M. Camacho, E. M. Cañete, J. R. Gómez, B. A. Omirov, “$3$-filiform Leibniz algebras of maximum length”, Siberian Math. J., 57:1 (2016), 24–35  mathnet  crossref  crossref  mathscinet  isi  elib
    10. Ana Rovi, “Lie Algebroids in the Loday–Pirashvili Category”, SIGMA, 11 (2015), 079, 16 pp.  mathnet  crossref
    11. S. M. Ratseev, “On minimal Leibniz algebras with nilpotent commutator subalgebra”, St. Petersburg Math. J., 27:1 (2016), 125–136  mathnet  crossref  mathscinet  isi  elib
    12. T. V. Skoraya, Yu. Yu. Frolova, “O mnogoobrazii $_{3}\mathbf{N}$ algebr Leibnitsa i ego podmnogoobraziyakh”, Chebyshevskii sb., 15:1 (2014), 155–185  mathnet
    13. S. P. Mishchenko, Yu. Yu. Frolova, “Some Extremal Properties of the Variety of Leibniz Algebras Left Nilpotent of Class at Most Three”, Math. Notes, 95:6 (2014), 806–814  mathnet  crossref  crossref  mathscinet  isi  elib
    14. A. V. Polovinkina, T. V. Skoraya, “Usloviya konechnosti kodliny mnogoobraziya algebr Leibnitsa”, Vestn. SamGU. Estestvennonauchn. ser., 2014, no. 10(121), 84–90  mathnet
    15. T. V. Skoraya, A. V. Shvetsova, “Novye svoistva mnogoobrazii algebr Leibnitsa”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 13:4(2) (2013), 124–129  mathnet  crossref  elib
    16. T. V. Skoraya, Yu. Yu. Frolova, “O nekotorykh mnogoobraziyakh algebr Leibnitsa”, Vestn. SamGU. Estestvennonauchn. ser., 2011, no. 5(86), 71–80  mathnet
    17. S. M. Ratseev, “The Growth of Varieties of Leibniz Algebras with Nilpotent Commutator Subalgebra”, Math. Notes, 82:1 (2007), 96–103  mathnet  crossref  crossref  mathscinet  isi  elib
    18. S. P. Mishchenko, O. I. Cherevatenko, “Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth”, J. Math. Sci., 152:2 (2008), 282–287  mathnet  crossref  mathscinet  zmath  elib  elib
    19. M. S. Burgin, “Schreier varieties of linear $\Omega$-algebras”, Math. USSR-Sb., 22:4 (1974), 561–579  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:530
    Full-text PDF :259
    References:2
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025