Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 22, Issue 4, Pages 561–579
DOI: https://doi.org/10.1070/SM1974v022n04ABEH001705
(Mi sm3479)
 

This article is cited in 4 scientific papers (total in 4 papers)

Schreier varieties of linear $\Omega$-algebras

M. S. Burgin
References:
Abstract: A variety of universal algebras is called a Schreier variety if every subalgebra of any free algebra in that variety is also free in that variety. This paper gives a description of the Schreier varieties of linear $\Omega$-algebras over an associative commutative ring, defined by systems of homogeneous identities. As a corollary to these results one obtains a description of all Schreier varieties of linear $\Omega$-algebras over an infinite field (in particular, over a field of characteristic zero). These algebras include, in particular, nonassociative algebras.
Bibliography: 25 titles.
Received: 18.05.1973
Bibliographic databases:
UDC: 519.48
MSC: Primary 08A15, 08A10, 16A06; Secondary 17A99
Language: English
Original paper language: Russian
Citation: M. S. Burgin, “Schreier varieties of linear $\Omega$-algebras”, Math. USSR-Sb., 22:4 (1974), 561–579
Citation in format AMSBIB
\Bibitem{Bur74}
\by M.~S.~Burgin
\paper Schreier varieties of linear $\Omega$-algebras
\jour Math. USSR-Sb.
\yr 1974
\vol 22
\issue 4
\pages 561--579
\mathnet{http://mi.mathnet.ru/eng/sm3479}
\crossref{https://doi.org/10.1070/SM1974v022n04ABEH001705}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=417028}
\zmath{https://zbmath.org/?q=an:0304.08002}
Linking options:
  • https://www.mathnet.ru/eng/sm3479
  • https://doi.org/10.1070/SM1974v022n04ABEH001705
  • https://www.mathnet.ru/eng/sm/v135/i4/p554
  • This publication is cited in the following 4 articles:
    1. A. V. Mikhalev, “Algebras with single defining relation”, J. Math. Sci., 283:6 (2024), 919–928  mathnet  crossref
    2. V. A. Artamonov, A. V. Klimakov, A. A. Mikhalev, A. V. Mikhalev, “Primitive and almost primitive elements of Schreier varieties”, J. Math. Sci., 237:2 (2019), 157–179  mathnet  crossref  elib
    3. Pure and Applied Mathematics, 84, Polynomial Identities in Ring Theory, 1980, 341  crossref
    4. T. M. Baranovich, M. S. Burgin, “Linear $\Omega$-algebras”, Russian Math. Surveys, 30:4 (1975), 65–113  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:307
    Russian version PDF:101
    English version PDF:20
    References:54
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025