Abstract:
The optimal measurement problem is the problem of minimizing the difference between virtual observation values obtained by using a computational model and experimental data. The study of this problem splits into three parts, namely, a mathematical model of optimal measurements, algorithms for the numerical analysis of this model, and software to implement these algorithms. Here we describe the first two parts. We also describe a mathematical optimal measurement model in the presence of various kinds of interferences and an approximation of the optimal measurement and prove that these approximations converge to the precise optimal measurement. A numerical algorithm for determining approximations of the optimal measurement is described.
Keywords:
approximations of optimal measurement, Leontief type system, degenerate matrix flow, quadratic functional, optimal control problem, gradient descent method.
Citation:
A. L. Shestakov, S. A. Zagrebina, N. A. Manakova, M. A. Sagadeeva, G. A. Sviridyuk, “Numerical optimal measurement algorithm under distortions caused by inertia, resonances, and sensor degradation”, Avtomat. i Telemekh., 2021, no. 1, 55–67; Autom. Remote Control, 82:1 (2021), 41–50
This publication is cited in the following 12 articles:
A. V. Keller, I. A. Kolesnikov, “Ob osobennostyakh matematicheskoi modeli optimalnogo dinamicheskogo izmereniya pri realizatsii splain-metoda”, J. Comp. Eng. Math., 11:1 (2024), 24–33
M. A. Sagadeeva, “Zadacha optimalnogo dinamicheskogo izmereniya s multiplikativnym vozdeistviem v prostranstvakh differentsiruemykh «shumov»”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 28:4 (2024), 651–664
Aleksey V. Bogomolov, Aleksandr A. Osipov, A. S. Soldatov, Studies in Systems, Decision and Control, 477, Cyber-Physical Systems Engineering and Control, 2023, 75
A. V. Keller, I. A. Kolesnikov, “Metody avtomaticheskogo i optimalnogo upravleniya v dinamicheskikh izmereniyakh”, J. Comp. Eng. Math., 10:4 (2023), 3–25
A. V. Keller, “Sistemy leontevskogo tipa i prikladnye zadachi”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 15:1 (2022), 23–42
E. V. Bychkov, S. A. Zagrebina, A. A. Zamyshlyaeva, A. V. Keller, N. A. Manakova, M. A. Sagadeeva, G. A. Sviridyuk, “Razvitie teorii optimalnykh dinamicheskikh izmerenii”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 15:3 (2022), 19–33
A. A. Zamyshlyaeva, A. V. Lut, “Obrabotka informatsii po vosstanovleniyu parametra vneshnego vozdeistviya dlya matematicheskoi modeli ionno-zvukovykh voln v plazme”, J. Comp. Eng. Math., 9:1 (2022), 59–72
A. V. Keller, “O nablyudenii pri reshenii zadachi optimalnykh dinamicheskikh izmerenii”, J. Comp. Eng. Math., 9:3 (2022), 20–29
A. L. Shestakov, A. A. Zamyshlyaeva, N. A. Manakova, G. A. Sviridyuk, A. V. Keller, “Reconstruction of a dynamically distorted signal based on the theory of optimal dynamic measurements”, Autom. Remote Control, 82:12 (2021), 2143–2154
A. L. Shestakov, A. V. Keller, “Odnomernyi filtr Kalmana v algoritmakh chislennogo resheniya zadachi optimalnogo dinamicheskogo izmereniya”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 14:4 (2021), 120–125
A.L. Shestakov, A.V. Keller, A.A. Zamyshlyaeva, N.A. Manakova, O.N. Tsyplenkova, O.V. Gavrilova, K.V. Perevozchikova, “Restoration of dynamically distorted signal using the theory of optimal dynamic measurements and digital filtering”, Measurement: Sensors, 18 (2021), 100178
Shestakov Alexandr, Zagrebina Sophiya, Sagadeeva Minzilya, Bychkov Evgeniy, Solovyova Natalya, Goncharov Nikita, Sviridyuk Georgy, “A new method for studying the problem of optimal dynamic measurement in the presence of observation interference”, Measurement: Sensors, 18 (2021), 100266