Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2021, Volume 14, Issue 4, Pages 120–125
DOI: https://doi.org/10.14529/mmp210411
(Mi vyuru624)
 

This article is cited in 4 scientific papers (total in 4 papers)

Short Notes

One-dimensional Kalman filter in algorithms for numerical solution of the problem of optimal dynamic measurement

A. L. Shestakova, A. V. Kellerab

a South Ural State University, Chelyabinsk, Russian Federation
b Voronezh State Technical University, Voronezh, Russian Federation
Full-text PDF (176 kB) Citations (4)
References:
Abstract: The article proposes the use of a digital one-dimensional Kalman filter in the implementation of numerical algorithms for solving the problem of optimal dynamic measurements to restore a dynamically distorted signal in the presence of noise. The mathematical model of a complex measuring device is constructed as a Leontief-type system, the initial state of which reflects the Showalter–Sidorov condition. The main position of the theory of optimal dynamic measurements is the modeling of the desired input signal as a solution to the optimal control problem with minimization of the penalty functional, in which the discrepancy between the simulated and observed output (or observed) signal is estimated. The presence of noise at the output of the measuring device makes it necessary to use digital filters in the numerical algorithms. Smoothing filters used for unknown probabilistic parameters of interference are not effective enough for filtering peak-like signals over a short time interval. In addition, the dynamics of measurements actualizes the consideration of filters that respond to rapidly changing data. The article proposes the inclusion of the procedure for filtering the observed signal into previously developed numerical algorithms, which makes it possible to either expand their application or simplify the penalty functionality.
Keywords: optimal dynamic measurement, Kalman filter, numerical solution algorithm, Leontief type system.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FENU-2020-0022 (2020072ГЗ)
Received: 08.09.2021
Document Type: Article
UDC: 517.9
MSC: 93E10
Language: Russian
Citation: A. L. Shestakov, A. V. Keller, “One-dimensional Kalman filter in algorithms for numerical solution of the problem of optimal dynamic measurement”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:4 (2021), 120–125
Citation in format AMSBIB
\Bibitem{SheKel21}
\by A.~L.~Shestakov, A.~V.~Keller
\paper One-dimensional Kalman filter in algorithms for numerical solution of the problem of optimal dynamic measurement
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2021
\vol 14
\issue 4
\pages 120--125
\mathnet{http://mi.mathnet.ru/vyuru624}
\crossref{https://doi.org/10.14529/mmp210411}
Linking options:
  • https://www.mathnet.ru/eng/vyuru624
  • https://www.mathnet.ru/eng/vyuru/v14/i4/p120
  • This publication is cited in the following 4 articles:
    1. A. V. Keller, I. A. Kolesnikov, “Ob osobennostyakh matematicheskoi modeli optimalnogo dinamicheskogo izmereniya pri realizatsii splain-metoda”, J. Comp. Eng. Math., 11:1 (2024), 24–33  mathnet  crossref
    2. A. V. Keller, I. A. Kolesnikov, “Metody avtomaticheskogo i optimalnogo upravleniya v dinamicheskikh izmereniyakh”, J. Comp. Eng. Math., 10:4 (2023), 3–25  mathnet  crossref
    3. A. V. Keller, “O nablyudenii pri reshenii zadachi optimalnykh dinamicheskikh izmerenii”, J. Comp. Eng. Math., 9:3 (2022), 20–29  mathnet  crossref
    4. E.V. Bychkov, S.A. Zagrebina, A.A. Zamyshlyaeva, N.A. Manakova, M.A. Sagadeeva, G.A. Sviridyuk, A.V. Keller, “Development of the Theory of Optimal Dynamic Measurements”, Bulletin of the SUSU. MMP, 15:3 (2022), 19  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:194
    Full-text PDF :60
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025