Citation:
T. A. Suslina, “Descrete spectrum of the two-dimensional periodic second order elliptic operator perturbed by a decaying potential. II. Internal gaps”, Algebra i Analiz, 15:2 (2003), 128–189; St. Petersburg Math. J., 15:2 (2004), 249–287
\Bibitem{Sus03}
\by T.~A.~Suslina
\paper Descrete spectrum of the two-dimensional periodic second order elliptic operator perturbed by a~decaying potential. II.~Internal gaps
\jour Algebra i Analiz
\yr 2003
\vol 15
\issue 2
\pages 128--189
\mathnet{http://mi.mathnet.ru/aa786}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2052132}
\zmath{https://zbmath.org/?q=an:1070.47042}
\transl
\jour St. Petersburg Math. J.
\yr 2004
\vol 15
\issue 2
\pages 249--287
\crossref{https://doi.org/10.1090/S1061-0022-04-00810-6}
Linking options:
https://www.mathnet.ru/eng/aa786
https://www.mathnet.ru/eng/aa/v15/i2/p128
This publication is cited in the following 5 articles:
Nakic I. Taufer M. Tautenhahn M. Veselic I. Seelmann A., “Unique Continuation and Lifting of Spectral Band Edges of Schrodinger Operators on Unbounded Domains”, J. Spectr. Theory, 10:3 (2020), 843–885
Dimassi M., “Semi-classical Asymptotics for Schrödinger Operator with Oscillating Decaying Potential”, Can. Math. Bul.-Bul. Can. Math., 59:4 (2016), 734–747
D. I. Borisov, “On the spectrum of a two-dimensional periodic operator with a small localized perturbation”, Izv. Math., 75:3 (2011), 471–505
Boulton L., Levitin M., “On approximation of the eigenvalues of perturbed periodic Schrödinger operators”, J. Phys. A, 40:31 (2007), 9319–9329
M. Sh. Birman, T. A. Suslina, “Homogenization of a multidimensional periodic elliptic operator in a neighbourhood of the edge of the internal gap”, J. Math. Sci. (N. Y.), 136:2 (2006), 3682–3690