Аннотация:
The model problem under study concerns the evolution of two viscous capillary fluids of different types: compressible and incompressible, contained in a bounded vessel and separated by a free interface. The solution is estimated in the Sobolev–Slobodetskiǐ function spaces; these estimates can be useful for the proof of stability for the rest state.
Ключевые слова:
compressible and incompressible fluids, free boundary, Sobolev–Slobodetskiǐ spaces.
Образец цитирования:
V. A. Solonnikov, “On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a free interface”, Алгебра и анализ, 30:2 (2018), 274–317; St. Petersburg Math. J., 30:2 (2019), 347–377
\RBibitem{Sol18}
\by V.~A.~Solonnikov
\paper On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a~free interface
\jour Алгебра и анализ
\yr 2018
\vol 30
\issue 2
\pages 274--317
\mathnet{http://mi.mathnet.ru/aa1589}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3790740}
\elib{https://elibrary.ru/item.asp?id=32469635}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 30
\issue 2
\pages 347--377
\crossref{https://doi.org/10.1090/spmj/1546}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000459859600012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062859046}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1589
https://www.mathnet.ru/rus/aa/v30/i2/p274
Эта публикация цитируется в следующих 3 статьяx:
T. P. Castano, J. J. L. Velazquez, “On the dynamics of thin layers of viscous flows inside another viscous fluid”, J. Differ. Equ., 300 (2021), 252–311
V. A. Solonnikov, “L2-theory for two viscous fluids of different types: Compressible and incompressible”, Алгебра и анализ, 32:1 (2020), 121–186; St. Petersburg Math. J., 32:1 (2021), 91–137
V. A. Solonnikov, “Lp-estimates of solution of the free boundary problem for viscous compressible and incompressible fluids in the linear approximation”, Алгебра и анализ, 32:3 (2020), 254–291; St. Petersburg Math. J., 32:3 (2021), 577–604