Abstract:
The purpose of this paper is to investigate the asymptotic behavior of the density estimators when the deviation density function from estimaror is measured in Lp metrix.
Citation:
I. A. Ibragimov, R. Z. Khas'minskii, “Estimation of distribution density”, Studies in mathematical statistics. Part IV, Zap. Nauchn. Sem. LOMI, 98, "Nauka", Leningrad. Otdel., Leningrad, 1980, 61–85; J. Soviet Math., 21:1 (1983), 40–57
\Bibitem{IbrKha80}
\by I.~A.~Ibragimov, R.~Z.~Khas'minskii
\paper Estimation of distribution density
\inbook Studies in mathematical statistics. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1980
\vol 98
\pages 61--85
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl3286}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=591862}
\zmath{https://zbmath.org/?q=an:0482.62025|0507.62041}
\transl
\jour J. Soviet Math.
\yr 1983
\vol 21
\issue 1
\pages 40--57
\crossref{https://doi.org/10.1007/BF01091455}
Linking options:
https://www.mathnet.ru/eng/znsl3286
https://www.mathnet.ru/eng/znsl/v98/p61
This publication is cited in the following 35 articles:
Theory Probab. Appl., 69:3 (2024), 404–424
“Global rate optimality of integral curve estimators
in high order tensor models”, Theory Probab. Appl., 68:2 (2023), 250–266
A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583
Blair Bilodeau, Dylan J. Foster, Daniel M. Roy, “Minimax rates for conditional density estimation via empirical entropy”, Ann. Statist., 51:2 (2023)
J Rojas-Sandoval, P Acevedo-Rodríguez, “CABI Compendium”, 2022
Min Xu, Richard J. Samworth, “High-dimensional nonparametric density estimation via symmetry and shape constraints”, Ann. Statist., 49:2 (2021)
T. Nagler, “Asymptotic Analysis of the Jittering Kernel Density Estimator”, Math. Meth. Stat., 27:1 (2018), 32
Arlene K. H. Kim, Richard J. Samworth, “Global rates of convergence in log-concave density estimation”, Ann. Statist., 44:6 (2016)
Rebelles G., “Pointwise Adaptive Estimation of a Multivariate Density Under Independence Hypothesis”, Bernoulli, 21:4 (2015), 1984–2023
Rebelles G., “l-P Adaptive Estimation of An Anisotropic Density Under Independence Hypothesis”, Electron. J. Stat., 9:1 (2015), 106–134
Olga Kosta, Natalia Stepanova, “Efficient Density Estimation and Value at Risk Using Fejér-Type Kernel Functions”, JMF, 05:05 (2015), 480
Goldenshluger A., Lepski O., “on Adaptive Minimax Density Estimation on R-D”, Probab. Theory Relat. Field, 159:3-4 (2014), 479–543
S. Yu. Novak, “On the accuracy of inference on heavy-tailed distributions”, Theory Probab. Appl., 58:3 (2014), 509–518
A. V. Gol'denshlyuger, O. V. Lepskiǐ, “General procedure for selecting linear estimators”, Theory Probab. Appl., 57:2 (2013), 209–226
Goldenshluger A., Lepski O., “Bandwidth Selection in Kernel Density Estimation: Oracle Inequalities and Adaptive Minimax Optimality”, Ann Statist, 39:3 (2011), 1608–1632
L. A. Sakhanenko, “Global rate optimality in a model for diffusion tensor imaging”, Theory Probab. Appl., 55:1 (2011), 77–90
J. Math. Sci. (N. Y.), 163:3 (2010), 238–261
C. Butucea, A. Tsybakov, “Sharp optimality in density deconvolution with dominating bias. I”, Theory Probab. Appl., 52:1 (2008), 24–39
M. Guţă, L. Artiles, “Minimax estimation of the Wigner function in quantum homodyne tomography with ideal detectors”, Math. Meth. Stat., 16:1 (2007), 1
I. A. Ibragimov, “On censored sample estimation of a multivariate analytic probability density”, Theory Probab. Appl., 51:1 (2007), 142–154