Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1999, Volume 44, Issue 2, Pages 328–350
DOI: https://doi.org/10.4213/tvp767
(Mi tvp767)
 

This article is cited in 33 scientific papers (total in 34 papers)

On almost sure limit theorems

I. A. Ibragimova, M. A. Lifshitsb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Saint-Petersburg State University
Abstract: By a sequence of random vectors {ζk}, we can construct empirical distributions of the type Qn=(logn)1k=1nδζk/k. Statements on the convergence of these or similar distributions with probability 1 to a limit distribution are called almost sure theorems. We propose several methods which permit us to easily deduce the almost sure limit theorems from the classical limit theorems, prove the invariance principle of the type “almost sure” and investigate the convergence of generalized moments. Unlike the majority of the preceding papers, where only convergence to the normal law is considered, our results may be applied in the case of limit distributions of the general type.
Keywords: limit theorems, convergence almost sure, sums of independent variables, weak dependence, invariance principle.
Received: 12.02.1998
English version:
Theory of Probability and its Applications, 2000, Volume 44, Issue 2, Pages 254–272
DOI: https://doi.org/10.1137/S0040585X97977562
Bibliographic databases:
Language: Russian
Citation: I. A. Ibragimov, M. A. Lifshits, “On almost sure limit theorems”, Teor. Veroyatnost. i Primenen., 44:2 (1999), 328–350; Theory Probab. Appl., 44:2 (2000), 254–272
Citation in format AMSBIB
\Bibitem{IbrLif99}
\by I.~A.~Ibragimov, M.~A.~Lifshits
\paper On almost sure limit theorems
\jour Teor. Veroyatnost. i Primenen.
\yr 1999
\vol 44
\issue 2
\pages 328--350
\mathnet{http://mi.mathnet.ru/tvp767}
\crossref{https://doi.org/10.4213/tvp767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1751476}
\zmath{https://zbmath.org/?q=an:0970.60032}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 2
\pages 254--272
\crossref{https://doi.org/10.1137/S0040585X97977562}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089405200003}
Linking options:
  • https://www.mathnet.ru/eng/tvp767
  • https://doi.org/10.4213/tvp767
  • https://www.mathnet.ru/eng/tvp/v44/i2/p328
  • This publication is cited in the following 34 articles:
    1. Panqiu Xia, Guangqu Zheng, “Almost Sure Central Limit Theorems for Parabolic/Hyperbolic Anderson Models with Gaussian Colored Noises”, J Theor Probab, 38:2 (2025)  crossref
    2. István Berkes, Siegfried Hörmann, “Some Optimal Conditions for the ASCLT”, J Theor Probab, 37:1 (2024), 209  crossref
    3. A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    4. István Berkes, Endre Csáki, “On the Almost Sure Central Limit Theorem Along Subsequences”, MathPann, 28_NS2:1 (2022), 11  crossref
    5. Torrisi G.L., Leonardi E., “Almost Sure Central Limit Theorems in Stochastic Geometry”, Adv. Appl. Probab., 52:3 (2020), 705–734  crossref  isi
    6. Azmoodeh E., Nourdin I., “Almost Sure Limit Theorems on Wiener Chaos: the Non-Central Case”, Electron. Commun. Probab., 24 (2019), 9  crossref  mathscinet  zmath  isi
    7. M. A. Lifshits, Ya. Yu. Nikitin, V. V. Petrov, A. Yu. Zaitsev, A. A. Zinger, “Toward the history of the Saint Petersburg school of probability and statistics. I. Limit theorems for sums of independent random variables”, Vestn. St Petersb. Univ. Math., 51:2 (2018), 144–163  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    8. Khalil M., Tudor C.A., Zili M., “Spatial Variation For the Solution to the Stochastic Linear Wave Equation Driven By Additive Space-Time White Noise”, Stoch. Dyn., 18:5 (2018), 1850036  crossref  mathscinet  zmath  isi  scopus
    9. L. Pastur, M. Shcherbina, “Szegö-type theorems for one-dimensional Schrödinger operator with random potential (smooth case)”, Zhurn. matem. fiz., anal., geom., 14:3 (2018), 362–388  mathnet
    10. Khalil M., Tudor C.A., “Correlation Structure, Quadratic Variations and Parameter Estimation For the Solution to the Wave Equation With Fractional Noise”, Electron. J. Stat., 12:2 (2018), 3639–3672  crossref  mathscinet  zmath  isi  scopus
    11. L. PASTUR, M. SHCHERBINA, “Szego-Type Theorems for One-Dimensional Schrodinger Operator with Random Potential (Smooth Case)”, Z. mat. fiz. anal. geom., 14:3 (2018), 362  crossref
    12. Zheng G., “Normal Approximation and Almost Sure Central Limit Theorem For Non-Symmetric Rademacher Functionals”, Stoch. Process. Their Appl., 127:5 (2017), 1622–1636  crossref  mathscinet  zmath  isi  scopus
    13. Cenac P., Es-Sebaiy Kh., “Almost Sure Central Limit Theorems For Random Ratios and Applications To Lse For Fractional Ornstein–Uhlenbeck Processes”, Prob. Math. Stat.., 35:2 (2015), 285–300  mathscinet  zmath  isi
    14. Shen G., Yan L., Cui J., “Berry-Ess,En Bounds and Almost Sure Clt for Quadratic Variation of Weighted Fractional Brownian Motion”, J. Inequal. Appl., 2013, 275, 1–13  crossref  mathscinet  zmath  isi  scopus
    15. Oprisan A., Korzeniowski A., “Large Deviations via Almost Sure Clt for Functionals of Markov Processes”, Stoch. Anal. Appl., 30:5 (2012), 933–947  crossref  mathscinet  zmath  isi  scopus
    16. Tudor C., “Berry-Esseen bounds and almost sure CLT for the quadratic variation of the sub-fractional Brownian motion”, J Math Anal Appl, 375:2 (2011), 667–676  crossref  mathscinet  zmath  isi  elib  scopus
    17. Theory Probab. Appl., 55:2 (2011), 361–367  mathnet  crossref  crossref  mathscinet  isi
    18. Bercu B., Nourdin I., Taqqu M.S., “Almost sure central limit theorems on the Wiener space”, Stochastic Process Appl, 120:9 (2010), 1607–1628  crossref  mathscinet  zmath  isi  elib  scopus
    19. Nourdin I., Peccati G., “Universal Gaussian fluctuations of non-Hermitian matrix ensembles: From weak convergence to almost sure CLTs”, Alea-Latin American Journal of Probability and Mathematical Statistics, 7 (2010), 341–375  mathscinet  zmath  isi
    20. A. Chuprunov, L. Terekhova, “Almost sure versions of limit theorems for random allocations with the random number of cells”, Lobachevskii J Math, 31:3 (2010), 271  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:651
    Full-text PDF :202
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025