Abstract:
Let X1,X2,… be a sequence of independent random variables which have the distribution functions F1(x),F2(x),…, the mean values m1,m2,…, the finite variances σ21,σ22… and infinite absolute moments of order 2+δ for any δ>0. The examples of sequences are given for which the estimate
supx|Fn(x)−Φ(x)|⩽CΨn(εsn)
does not hold true. Here C is a constant, ε is any fixed positive number and Fn(x), Φ(x), Ψn(εsn) are defined on p. 141.
Citation:
I. A. Ibragimov, L. V. Osipov, “On an estimate of the remainder in Lindeberg's theorem”, Teor. Veroyatnost. i Primenen., 11:1 (1966), 141–143; Theory Probab. Appl., 11:1 (1966), 125–128
\Bibitem{IbrOsi66}
\by I.~A.~Ibragimov, L.~V.~Osipov
\paper On an estimate of the remainder in Lindeberg's theorem
\jour Teor. Veroyatnost. i Primenen.
\yr 1966
\vol 11
\issue 1
\pages 141--143
\mathnet{http://mi.mathnet.ru/tvp573}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=196790}
\zmath{https://zbmath.org/?q=an:0203.19701}
\transl
\jour Theory Probab. Appl.
\yr 1966
\vol 11
\issue 1
\pages 125--128
\crossref{https://doi.org/10.1137/1111008}
Linking options:
https://www.mathnet.ru/eng/tvp573
https://www.mathnet.ru/eng/tvp/v11/i1/p141
This publication is cited in the following 9 articles:
A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583
Ruslan Gabdullin, Vladimir Makarenko, Irina Shevtsova, “On Natural Convergence Rate Estimates in the Lindeberg Theorem”, Sankhya A, 84:2 (2022), 671
Shakir Formanov, Bikajon Khusainova, Abdulhamid Sirozhitdinov, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 060011
I. A. Ibragimov, E. L. Presman, Sh. K. Formanov, “On modifications of the Lindeberg and Rotar' conditions in the central limit theorem”, Theory Probab. Appl., 65:4 (2021), 648–651
E. L. Presman, Sh. K. Formanov, “On Lindeberg–Feller Limit Theorem”, Dokl. Math., 99:2 (2019), 204
Shakir Formanov, Lecture Notes in Computer Science, 10684, Analytical and Computational Methods in Probability Theory, 2017, 322
S. H. Siraždinov, š. K. Formanov, “On the estimates of the rate of convergence in the central limit theorem for homogeneous Markov chains”, Theory Probab. Appl., 28:2 (1984), 229–239
V. I. Rotar', “On summation of independent variables in a non-classical situation”, Russian Math. Surveys, 37:6 (1982), 151–175
William Feller, “On the Berry-Esseen theorem”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 10:3 (1968), 261