Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1963, Volume 8, Issue 4, Pages 391–430 (Mi tvp4689)  

This article is cited in 67 scientific papers (total in 68 papers)

On Estimation of the Spectral Function of a Stationary Gaussian Process

I. A. Ibragimov

Leningrad
Abstract: Let x1,x2,,xN be a sample time series drawn from the real stationary Gaussian process {xn},Exn0, with unknown spectral distribution function (s.d.f.) and spectral density function f(λ). The problem of estimating of s.d.f. F(λ) is discussed and the estimate FN(λ)=λ0IN(λ)dλ of s.d.f. F(λ) is considered, where
IN(λ)=12πN|N1xjeiλj|2.
In §1–§2 the asymptotic properties of expressions like
Eππφ(λ)IN(λ)dλ,EππT1(λ)IN(λ)dλππT2(μ)IN(μ)dμ
are investigated. The main section of this paper is §5. Let
ζN(λ)=N[FN(λ)Fλ],
and let ζ(λ) be a Gaussian stochastic process with
ζ(0)=0,Eζ(λ)0,Eζ(λ)ζ(μ)=2πmin(λ,μ)0f2(λ)dλ,0λ,μπ.
We denote by PN the probability measure induced in C[0,π] by ζN(λ), and by P the probability measure induced in C[0,π] by ζ(λ). The following is proved in §5:
Theorem 5.1 Let
1.baf(λ)dλ>0for every[a,b][π,π];2.ππ(f(λ))2+δdλ<for someδ>0,
then PNPN, where the sign denotes weak convergence of the measures.
In §8 some estimates are given for probabilities of large deviations FN(λ) from F(λ).
In §9 it is shown that all results of §§18 are valid for continuous time.
Received: 26.02.1962
English version:
Theory of Probability and its Applications, 1963, Volume 8, Issue 4, Pages 366–401
DOI: https://doi.org/10.1137/1108044
Document Type: Article
Language: Russian
Citation: I. A. Ibragimov, “On Estimation of the Spectral Function of a Stationary Gaussian Process”, Teor. Veroyatnost. i Primenen., 8:4 (1963), 391–430; Theory Probab. Appl., 8:4 (1963), 366–401
Citation in format AMSBIB
\Bibitem{Ibr63}
\by I.~A.~Ibragimov
\paper On Estimation of the Spectral Function of a Stationary Gaussian Process
\jour Teor. Veroyatnost. i Primenen.
\yr 1963
\vol 8
\issue 4
\pages 391--430
\mathnet{http://mi.mathnet.ru/tvp4689}
\transl
\jour Theory Probab. Appl.
\yr 1963
\vol 8
\issue 4
\pages 366--401
\crossref{https://doi.org/10.1137/1108044}
Linking options:
  • https://www.mathnet.ru/eng/tvp4689
  • https://www.mathnet.ru/eng/tvp/v8/i4/p391
  • This publication is cited in the following 68 articles:
    1. Mamikon S. Ginovyan, Artur A. Sahakyan, “On Moderate Deviations for Quadratic Functionals in Continuous Time Gaussian Stationary Processes”, J. Contemp. Mathemat. Anal., 60:1 (2025), 60  crossref
    2. Daniel Rademacher, Jens-Peter Kreiß, Efstathios Paparoditis, “Asymptotic normality of spectral means of Hilbert space valued random processes”, Stochastic Processes and their Applications, 2024, 104357  crossref
    3. A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    4. Mamikon S. Ginovyan, Murad S. Taqqu, “Limit theorems for Toeplitz-type quadratic functionals of stationary processes and applications”, Probab. Surveys, 19:none (2022)  crossref
    5. Yuichi Goto, Tobias Kley, Ria Van Hecke, Stanislav Volgushev, Holger Dette, Marc Hallin, “The integrated copula spectrum”, Ann. Statist., 50:6 (2022)  crossref
    6. Ginovyan M.S. Sahakyan A.A., “Statistical Inference For Stationary Linear Models With Tapered Data”, Statist. Surv., 15 (2021), 154–194  crossref  isi
    7. Ginovyan M.S. Sahakyan A.A., “Statistical Estimation For Stationary Models With Tapered Data”, J. Contemp. Math. Anal.-Armen. Aca., 56:6 (2021), 347–367  crossref  isi
    8. Alexander Meier, Claudia Kirch, Renate Meyer, “Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach”, Journal of Multivariate Analysis, 175 (2020), 104560  crossref
    9. A. V. Ivanov, N. N. Leonenko, I. V. Orlovskyi, “On the Whittle estimator for linear random noise spectral density parameter in continuous-time nonlinear regression models”, Stat Inference Stoch Process, 23:1 (2020), 129  crossref
    10. Ginovyan M.S. Sahakyan A.A., “Limit Theorems For Tapered Toeplitz Quadratic Functionals of Continuous-Time Gaussian Stationary Processes”, J. Contemp. Math. Anal.-Armen. Aca., 54:4 (2019), 222–239  crossref  isi
    11. Pipiras V. Taqqu M., “Long-Range Dependence and Self-Similarity”, Long-Range Dependence and Self-Similarity, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge Univ Press, 2017, 1–668  crossref  mathscinet  zmath  isi
    12. Shuyang Bai, Mamikon S. Ginovyan, Murad S. Taqqu, “Functional limit theorems for Toeplitz quadratic functionals of continuous time Gaussian stationary processes”, Statistics & Probability Letters, 104 (2015), 58  crossref
    13. Gudmund Horn Hermansen, Nils Lid Hjort, “Bernshteǐn–von Mises theorems for nonparametric function analysis via locally constant modelling: A unified approach”, Journal of Statistical Planning and Inference, 166 (2015), 138  crossref
    14. Mamikon S. Ginovyan, Artur A. Sahakyan, Murad S. Taqqu, “The trace problem for Toeplitz matrices and operators and its impact in probability”, Probab. Surveys, 11:none (2014)  crossref
    15. M. S. Ginovyan, A. A. Sahakyan, “On the trace approximation problem for truncated Toeplitz operators and matrices”, J. Contemp. Mathemat. Anal., 49:1 (2014), 1  crossref
    16. Mamikon S. Ginovyan, Artur A. Sahakyan, “On the trace approximations of products of Toeplitz matrices”, Statistics & Probability Letters, 83:3 (2013), 753  crossref
    17. David R. Brillinger, Selected Works of David Brillinger, 2012, 179  crossref
    18. Theory Probab. Appl., 56:1 (2012), 57–71  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    19. Zhongjun Qu, “A Test Against Spurious Long Memory”, Journal of Business & Economic Statistics, 29:3 (2011), 423  crossref
    20. Konstantinos Fokianos, “Spectral estimation”, WIREs Computational Stats, 2:2 (2010), 165  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :149
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025