Abstract:
Let x1,x2,…,xN be a sample time series drawn from the real stationary Gaussian process {xn},Exn≡0, with unknown spectral distribution function (s.d.f.) and spectral density function f(λ). The problem of estimating of s.d.f. F(λ) is discussed and the estimate F∗N(λ)=∫λ0IN(λ)dλ of s.d.f. F(λ) is considered, where IN(λ)=12πN|N∑1xjeiλj|2. In §1–§2 the asymptotic properties of expressions like E∫π−πφ(λ)IN(λ)dλ,E∫π−πT1(λ)IN(λ)dλ∫π−πT2(μ)IN(μ)dμ are investigated. The main section of this paper is §5. Let ζN(λ)=√N[F∗N(λ)−Fλ], and let ζ(λ) be a Gaussian stochastic process with ζ(0)=0,Eζ(λ)≡0,Eζ(λ)ζ(μ)=2π∫min(λ,μ)0f2(λ)dλ,0≤λ,μ≤π. We denote by PN the probability measure induced in C[0,π] by ζN(λ), and by P the probability measure induced in C[0,π] by ζ(λ). The following is proved in §5:
Theorem 5.1 Let
1.∫baf(λ)dλ>0for every[a,b]⊂[−π,π];2.∫π−π(f(λ))2+δdλ<∞for someδ>0,
then PN⇒PN→∞, where the sign ⇒ denotes weak convergence of the measures.
In §8 some estimates are given for probabilities of large deviations F∗N(λ) from F(λ).
In §9 it is shown that all results of §§1–8 are valid for continuous time.
Citation:
I. A. Ibragimov, “On Estimation of the Spectral Function of a Stationary Gaussian Process”, Teor. Veroyatnost. i Primenen., 8:4 (1963), 391–430; Theory Probab. Appl., 8:4 (1963), 366–401
\Bibitem{Ibr63}
\by I.~A.~Ibragimov
\paper On Estimation of the Spectral Function of a Stationary Gaussian Process
\jour Teor. Veroyatnost. i Primenen.
\yr 1963
\vol 8
\issue 4
\pages 391--430
\mathnet{http://mi.mathnet.ru/tvp4689}
\transl
\jour Theory Probab. Appl.
\yr 1963
\vol 8
\issue 4
\pages 366--401
\crossref{https://doi.org/10.1137/1108044}
Linking options:
https://www.mathnet.ru/eng/tvp4689
https://www.mathnet.ru/eng/tvp/v8/i4/p391
This publication is cited in the following 68 articles:
Mamikon S. Ginovyan, Artur A. Sahakyan, “On Moderate Deviations for Quadratic Functionals in Continuous Time Gaussian Stationary Processes”, J. Contemp. Mathemat. Anal., 60:1 (2025), 60
Daniel Rademacher, Jens-Peter Kreiß, Efstathios Paparoditis, “Asymptotic normality of spectral means of Hilbert space valued random processes”, Stochastic Processes and their Applications, 2024, 104357
A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583
Mamikon S. Ginovyan, Murad S. Taqqu, “Limit theorems for Toeplitz-type quadratic functionals of stationary processes and applications”, Probab. Surveys, 19:none (2022)
Yuichi Goto, Tobias Kley, Ria Van Hecke, Stanislav Volgushev, Holger Dette, Marc Hallin, “The integrated copula spectrum”, Ann. Statist., 50:6 (2022)
Ginovyan M.S. Sahakyan A.A., “Statistical Inference For Stationary Linear Models With Tapered Data”, Statist. Surv., 15 (2021), 154–194
Ginovyan M.S. Sahakyan A.A., “Statistical Estimation For Stationary Models With Tapered Data”, J. Contemp. Math. Anal.-Armen. Aca., 56:6 (2021), 347–367
Alexander Meier, Claudia Kirch, Renate Meyer, “Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach”, Journal of Multivariate Analysis, 175 (2020), 104560
A. V. Ivanov, N. N. Leonenko, I. V. Orlovskyi, “On the Whittle estimator for linear random noise spectral density parameter in continuous-time nonlinear regression models”, Stat Inference Stoch Process, 23:1 (2020), 129
Ginovyan M.S. Sahakyan A.A., “Limit Theorems For Tapered Toeplitz Quadratic Functionals of Continuous-Time Gaussian Stationary Processes”, J. Contemp. Math. Anal.-Armen. Aca., 54:4 (2019), 222–239
Pipiras V. Taqqu M., “Long-Range Dependence and Self-Similarity”, Long-Range Dependence and Self-Similarity, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge Univ Press, 2017, 1–668
Shuyang Bai, Mamikon S. Ginovyan, Murad S. Taqqu, “Functional limit theorems for Toeplitz quadratic functionals of continuous time Gaussian stationary processes”, Statistics & Probability Letters, 104 (2015), 58
Gudmund Horn Hermansen, Nils Lid Hjort, “Bernshteǐn–von Mises theorems for nonparametric function analysis via locally constant modelling: A unified approach”, Journal of Statistical Planning and Inference, 166 (2015), 138
Mamikon S. Ginovyan, Artur A. Sahakyan, Murad S. Taqqu, “The trace problem for Toeplitz matrices and operators and its impact in probability”, Probab. Surveys, 11:none (2014)
M. S. Ginovyan, A. A. Sahakyan, “On the trace approximation problem for truncated Toeplitz operators and matrices”, J. Contemp. Mathemat. Anal., 49:1 (2014), 1
Mamikon S. Ginovyan, Artur A. Sahakyan, “On the trace approximations of products of Toeplitz matrices”, Statistics & Probability Letters, 83:3 (2013), 753
David R. Brillinger, Selected Works of David Brillinger, 2012, 179
Theory Probab. Appl., 56:1 (2012), 57–71
Zhongjun Qu, “A Test Against Spurious Long Memory”, Journal of Business & Economic Statistics, 29:3 (2011), 423