Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1963, Volume 8, Issue 1, Pages 89–94 (Mi tvp4650)  

This article is cited in 69 scientific papers (total in 70 papers)

Short Communications

A Central Limit Theorem for a Class of Dependent Random Variables

I. A. Ibragimov

Leningrad
Abstract: Random variables x1,x2 with the conditions E{xi|xj1,} are considered and two theorems on the normal convergence of sums 1nxj are established.
Received: 17.08.1961
English version:
Theory of Probability and its Applications, 1963, Volume 8, Issue 1, Pages 83–89
DOI: https://doi.org/10.1137/1108007
Document Type: Article
Language: Russian
Citation: I. A. Ibragimov, “A Central Limit Theorem for a Class of Dependent Random Variables”, Teor. Veroyatnost. i Primenen., 8:1 (1963), 89–94; Theory Probab. Appl., 8:1 (1963), 83–89
Citation in format AMSBIB
\Bibitem{Ibr63}
\by I.~A.~Ibragimov
\paper A~Central Limit Theorem for a~Class of Dependent Random Variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1963
\vol 8
\issue 1
\pages 89--94
\mathnet{http://mi.mathnet.ru/tvp4650}
\transl
\jour Theory Probab. Appl.
\yr 1963
\vol 8
\issue 1
\pages 83--89
\crossref{https://doi.org/10.1137/1108007}
Linking options:
  • https://www.mathnet.ru/eng/tvp4650
  • https://www.mathnet.ru/eng/tvp/v8/i1/p89
  • This publication is cited in the following 70 articles:
    1. Vladimir V. Ulyanov, “From Classical to Modern Nonlinear Central Limit Theorems”, Mathematics, 12:14 (2024), 2276  crossref
    2. Ihar Volkau, Sergei Krasovskii, Abdul Mujeeb, Helen Balinsky, “A Non-Gradient and Non-Iterative Method for Mapping 3D Mesh Objects Based on a Summation of Dependent Random Values”, Algorithms, 17:6 (2024), 248  crossref
    3. B.L.S. Prakasa Rao, Handbook of Statistics, 2024  crossref
    4. A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    5. Lubashan Pathirana, Jeffrey Schenker, “Law of large numbers and central limit theorem for ergodic quantum processes”, Journal of Mathematical Physics, 64:8 (2023)  crossref
    6. Sébastien Bubeck, Christian Coester, Yuval Rabani, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, 2023, 581  crossref
    7. Liushuai Shi, Le Wang, Chengjiang Long, Sanping Zhou, Wei Tang, Nanning Zheng, Gang Hua, “Representing Multimodal Behaviors With Mean Location for Pedestrian Trajectory Prediction”, IEEE Trans. Pattern Anal. Mach. Intell., 45:9 (2023), 11184  crossref
    8. Victor Vargas, “Uniqueness and statistical properties of the Gibbs state on general one-dimensional lattice systems with Markovian structure”, Stoch. Dyn., 23:05 (2023)  crossref
    9. Rabi Bhattacharya, Edward Waymire, Graduate Texts in Mathematics, 299, Continuous Parameter Markov Processes and Stochastic Differential Equations, 2023, 299  crossref
    10. Odd O. Aalen, Per K. Andersen, Ørnulf Borgan, Richard D. Gill, Niels Keiding, Trends in the History of Science, The Splendors and Miseries of Martingales, 2022, 295  crossref
    11. Rick Durrett, Probability, 2019  crossref
    12. Yuanbo Li, Xunze Zheng, Chun Yip Yau, “Generalized threshold latent variable model”, Electron. J. Statist., 13:1 (2019)  crossref
    13. Zbigniew S. Szewczak, “On the martingale central limit theorem for strictly stationary sequences”, Journal of Mathematical Analysis and Applications, 476:2 (2019), 309  crossref
    14. Dalibor Volný, “On limit theorems for fields of martingale differences”, Stochastic Processes and their Applications, 129:3 (2019), 841  crossref
    15. A. V. Goryainov, V. B. Goryainov, “M-estimates of autoregression with random coefficients”, Autom. Remote Control, 79:8 (2018), 1409–1421  mathnet  crossref  isi  elib
    16. Ibragimov I.A., Lifshits M.A., Nazarov A.I., Zaporozhets D.N., “On the History of St. Petersburg School of Probability and Mathematical Statistics: II. Random Processes and Dependent Variables”, Vestn. St Petersb. Univ.-Math., 51:3 (2018), 213–236  crossref  mathscinet  isi  scopus
    17. Adrian Röllin, “On quantitative bounds in the mean martingale central limit theorem”, Statistics & Probability Letters, 138 (2018), 171  crossref
    18. B.L.S. Prakasa Rao, “Moderate deviation principle for maximum likelihood estimator for Markov processes”, Statistics & Probability Letters, 132 (2018), 74  crossref
    19. Statistical Portfolio Estimation, 2017, 349  crossref
    20. Dalibor Volný, “A central limit theorem for fields of martingale differences”, Comptes Rendus. Mathématique, 353:12 (2015), 1159  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:590
    Full-text PDF :287
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025