Abstract:
Random variables x1,x2… with the conditions E{xi|xj−1,…} are considered and two theorems on the normal convergence of sums ∑n1xj are established.
Citation:
I. A. Ibragimov, “A Central Limit Theorem for a Class of Dependent Random Variables”, Teor. Veroyatnost. i Primenen., 8:1 (1963), 89–94; Theory Probab. Appl., 8:1 (1963), 83–89
\Bibitem{Ibr63}
\by I.~A.~Ibragimov
\paper A~Central Limit Theorem for a~Class of Dependent Random Variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1963
\vol 8
\issue 1
\pages 89--94
\mathnet{http://mi.mathnet.ru/tvp4650}
\transl
\jour Theory Probab. Appl.
\yr 1963
\vol 8
\issue 1
\pages 83--89
\crossref{https://doi.org/10.1137/1108007}
Linking options:
https://www.mathnet.ru/eng/tvp4650
https://www.mathnet.ru/eng/tvp/v8/i1/p89
This publication is cited in the following 70 articles:
Vladimir V. Ulyanov, “From Classical to Modern Nonlinear Central Limit Theorems”, Mathematics, 12:14 (2024), 2276
Ihar Volkau, Sergei Krasovskii, Abdul Mujeeb, Helen Balinsky, “A Non-Gradient and Non-Iterative Method for Mapping 3D Mesh Objects Based on a Summation of Dependent Random Values”, Algorithms, 17:6 (2024), 248
B.L.S. Prakasa Rao, Handbook of Statistics, 2024
A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583
Lubashan Pathirana, Jeffrey Schenker, “Law of large numbers and central limit theorem for ergodic quantum processes”, Journal of Mathematical Physics, 64:8 (2023)
Sébastien Bubeck, Christian Coester, Yuval Rabani, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, 2023, 581
Liushuai Shi, Le Wang, Chengjiang Long, Sanping Zhou, Wei Tang, Nanning Zheng, Gang Hua, “Representing Multimodal Behaviors With Mean Location for Pedestrian Trajectory Prediction”, IEEE Trans. Pattern Anal. Mach. Intell., 45:9 (2023), 11184
Victor Vargas, “Uniqueness and statistical properties of the Gibbs state on general one-dimensional lattice systems with Markovian structure”, Stoch. Dyn., 23:05 (2023)
Rabi Bhattacharya, Edward Waymire, Graduate Texts in Mathematics, 299, Continuous Parameter Markov Processes and Stochastic Differential Equations, 2023, 299
Odd O. Aalen, Per K. Andersen, Ørnulf Borgan, Richard D. Gill, Niels Keiding, Trends in the History of Science, The Splendors and Miseries of Martingales, 2022, 295
Rick Durrett, Probability, 2019
Yuanbo Li, Xunze Zheng, Chun Yip Yau, “Generalized threshold latent variable model”, Electron. J. Statist., 13:1 (2019)
Zbigniew S. Szewczak, “On the martingale central limit theorem for strictly stationary sequences”, Journal of Mathematical Analysis and Applications, 476:2 (2019), 309
Dalibor Volný, “On limit theorems for fields of martingale differences”, Stochastic Processes and their Applications, 129:3 (2019), 841
A. V. Goryainov, V. B. Goryainov, “M-estimates of autoregression with random coefficients”, Autom. Remote Control, 79:8 (2018), 1409–1421
Ibragimov I.A., Lifshits M.A., Nazarov A.I., Zaporozhets D.N., “On the History of St. Petersburg School of Probability and Mathematical Statistics: II. Random Processes and Dependent Variables”, Vestn. St Petersb. Univ.-Math., 51:3 (2018), 213–236
Adrian Röllin, “On quantitative bounds in the mean martingale central limit theorem”, Statistics & Probability Letters, 138 (2018), 171
B.L.S. Prakasa Rao, “Moderate deviation principle for maximum likelihood estimator for Markov processes”, Statistics & Probability Letters, 132 (2018), 74
Statistical Portfolio Estimation, 2017, 349
Dalibor Volný, “A central limit theorem for fields of martingale differences”, Comptes Rendus. Mathématique, 353:12 (2015), 1159