Abstract:
In this paper, we show that some embedding theorems (see [5]) may serve as a source of some general results concerning analytic properties of sample functions of a stochastic process or field.
Citation:
I. A. Ibragimov, “Properties of sample functions for stochastic processes and embedding theorems”, Teor. Veroyatnost. i Primenen., 18:3 (1973), 468–480; Theory Probab. Appl., 18:3 (1974), 442–453
\Bibitem{Ibr73}
\by I.~A.~Ibragimov
\paper Properties of sample functions for stochastic processes and embedding theorems
\jour Teor. Veroyatnost. i Primenen.
\yr 1973
\vol 18
\issue 3
\pages 468--480
\mathnet{http://mi.mathnet.ru/tvp2719}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=326827}
\zmath{https://zbmath.org/?q=an:0324.60033}
\transl
\jour Theory Probab. Appl.
\yr 1974
\vol 18
\issue 3
\pages 442--453
\crossref{https://doi.org/10.1137/1118059}
Linking options:
https://www.mathnet.ru/eng/tvp2719
https://www.mathnet.ru/eng/tvp/v18/i3/p468
This publication is cited in the following 7 articles:
A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583
R. Mikulevičius, Fanhui Xu, “On some càdlàguity moment estimates of stochastic jump processes”, Electron. Commun. Probab., 24:none (2019)
Nikolai Dokuchaev, “On strong causal binomial approximation for stochastic processes”, Discrete & Continuous Dynamical Systems - B, 19:6 (2014), 1549
Andreas Basse-O'Connor, Svend-Erik Graversen, “Path and semimartingale properties of chaos processes”, Stochastic Processes and their Applications, 120:4 (2010), 522
X. Fernique, Lecture Notes in Mathematics, 976, Ecole d'Eté de Probabilités de Saint-Flour XI — 1981, 1983, 1
I. A. Ibragimov, “On smoothness conditions for trajectories of random functions”, Theory Probab. Appl., 28:2 (1984), 240–262
Naresh C. Jain, Ditlev Monrad, “Gaussian quasimartingales”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 59:2 (1982), 139