Abstract:
Let ξ(x) be a random function of x∈Rk and
ωrp(δ,ξ)=supx,h∈Rk|h|⩽δE1/p|r∑l=0(−1)lClrξ(x+lh)|p.
Properties of ωrp(δ,ξ) as a function of δ are investigated; a number of inequalities are
obtained.
Citation:
I. A. Ibragimov, “On smoothness conditions for trajectories of random functions”, Teor. Veroyatnost. i Primenen., 28:2 (1983), 229–250; Theory Probab. Appl., 28:2 (1984), 240–262
\Bibitem{Ibr83}
\by I.~A.~Ibragimov
\paper On smoothness conditions for trajectories of random functions
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 2
\pages 229--250
\mathnet{http://mi.mathnet.ru/tvp2292}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=700208}
\zmath{https://zbmath.org/?q=an:0533.60046|0516.60049}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 2
\pages 240--262
\crossref{https://doi.org/10.1137/1128023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984SS85900003}
Linking options:
https://www.mathnet.ru/eng/tvp2292
https://www.mathnet.ru/eng/tvp/v28/i2/p229
This publication is cited in the following 16 articles:
A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583
Alexandre Pannier, “Pathwise large deviations for white noise chaos expansions”, Bernoulli, 28:3 (2022)
Alexander A. Gushchin, Uwe Küchler, “On estimation of delay location”, Stat Inference Stoch Process, 14:3 (2011), 273
Peter M. Kotelenez, Thomas G. Kurtz, “Macroscopic limits for stochastic partial differential equations of McKean–Vlasov type”, Probab. Theory Relat. Fields, 146:1-2 (2010)
Amarjit Budhiraja, Paul Dupuis, Vasileios Maroulas, “Large deviations for infinite dimensional stochastic dynamical systems”, Ann. Probab., 36:4 (2008)
M. Ya. Kelbert, N. N. Leonenko, M. D. Ruiz-Medina, “Fractional random fields associated with stochastic fractional heat equations”, Advances in Applied Probability, 37:1 (2005), 108
N. A. Kolodij, “Some properties of random fields connected with stochastic integrals with respect to strong martingales”, J. Math. Sci. (N. Y.), 137:1 (2006), 4531–4540
Jie Xiong, “A stochastic log-Laplace equation”, Ann. Probab., 32:3B (2004)
I. A. Ibragimov, “An Estimation Problem for Quasilinear Stochastic Partial Differential
Equations”, Problems Inform. Transmission, 39:1 (2003), 51–77
I. A. Ibragimov, R. Z. Khas'minskii, “Estimation problems for coefficients of stochastic partial differential equations. Part III”, Theory Probab. Appl., 45:2 (2001), 210–232
I. A. Ibragimov, R. Z. Khas'minskii, “Estimation problems for coefficients of stochastic partial differential equations. Part I”, Theory Probab. Appl., 43:3 (1999), 370–387
Peter Imkeller, “On the perturbation problem for occupation densities”, Stochastic Processes and their Applications, 49:1 (1994), 41
Kotelenez Peter, “Existence, uniqueness and smoothnessfor a class of function valued stochastic partial differential equations”, Stochastics and Stochastic Reports, 41:3 (1992), 177
Michel Ledoux, Michel Talagrand, Probability in Banach Spaces, 1991, 297
Xavier Fernique, Probability in Banach Spaces 7, 1990, 83
Peter Kotelenez, Stochastic Space—Time Models and Limit Theorems, 1985, 95