Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1983, Volume 28, Issue 2, Pages 229–250 (Mi tvp2292)  

This article is cited in 15 scientific papers (total in 16 papers)

On smoothness conditions for trajectories of random functions

I. A. Ibragimov

Leningrad
Abstract: Let ξ(x) be a random function of xRk and
ωrp(δ,ξ)=supx,hRk|h|δE1/p|rl=0(1)lClrξ(x+lh)|p.
Properties of ωrp(δ,ξ) as a function of δ are investigated; a number of inequalities are obtained.
Received: 10.01.1983
English version:
Theory of Probability and its Applications, 1984, Volume 28, Issue 2, Pages 240–262
DOI: https://doi.org/10.1137/1128023
Bibliographic databases:
Language: Russian
Citation: I. A. Ibragimov, “On smoothness conditions for trajectories of random functions”, Teor. Veroyatnost. i Primenen., 28:2 (1983), 229–250; Theory Probab. Appl., 28:2 (1984), 240–262
Citation in format AMSBIB
\Bibitem{Ibr83}
\by I.~A.~Ibragimov
\paper On smoothness conditions for trajectories of random functions
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 2
\pages 229--250
\mathnet{http://mi.mathnet.ru/tvp2292}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=700208}
\zmath{https://zbmath.org/?q=an:0533.60046|0516.60049}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 2
\pages 240--262
\crossref{https://doi.org/10.1137/1128023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984SS85900003}
Linking options:
  • https://www.mathnet.ru/eng/tvp2292
  • https://www.mathnet.ru/eng/tvp/v28/i2/p229
  • This publication is cited in the following 16 articles:
    1. A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. Alexandre Pannier, “Pathwise large deviations for white noise chaos expansions”, Bernoulli, 28:3 (2022)  crossref
    3. Alexander A. Gushchin, Uwe Küchler, “On estimation of delay location”, Stat Inference Stoch Process, 14:3 (2011), 273  crossref
    4. Peter M. Kotelenez, Thomas G. Kurtz, “Macroscopic limits for stochastic partial differential equations of McKean–Vlasov type”, Probab. Theory Relat. Fields, 146:1-2 (2010)  crossref
    5. Amarjit Budhiraja, Paul Dupuis, Vasileios Maroulas, “Large deviations for infinite dimensional stochastic dynamical systems”, Ann. Probab., 36:4 (2008)  crossref
    6. M. Ya. Kelbert, N. N. Leonenko, M. D. Ruiz-Medina, “Fractional random fields associated with stochastic fractional heat equations”, Advances in Applied Probability, 37:1 (2005), 108  crossref
    7. N. A. Kolodij, “Some properties of random fields connected with stochastic integrals with respect to strong martingales”, J. Math. Sci. (N. Y.), 137:1 (2006), 4531–4540  mathnet  crossref  mathscinet  zmath  elib
    8. Jie Xiong, “A stochastic log-Laplace equation”, Ann. Probab., 32:3B (2004)  crossref
    9. I. A. Ibragimov, “An Estimation Problem for Quasilinear Stochastic Partial Differential Equations”, Problems Inform. Transmission, 39:1 (2003), 51–77  mathnet  crossref  mathscinet  zmath
    10. I. A. Ibragimov, R. Z. Khas'minskii, “Estimation problems for coefficients of stochastic partial differential equations. Part III”, Theory Probab. Appl., 45:2 (2001), 210–232  mathnet  mathnet  crossref  crossref  isi
    11. I. A. Ibragimov, R. Z. Khas'minskii, “Estimation problems for coefficients of stochastic partial differential equations. Part I”, Theory Probab. Appl., 43:3 (1999), 370–387  mathnet  mathnet  crossref  crossref  isi
    12. Peter Imkeller, “On the perturbation problem for occupation densities”, Stochastic Processes and their Applications, 49:1 (1994), 41  crossref
    13. Kotelenez Peter, “Existence, uniqueness and smoothnessfor a class of function valued stochastic partial differential equations”, Stochastics and Stochastic Reports, 41:3 (1992), 177  crossref
    14. Michel Ledoux, Michel Talagrand, Probability in Banach Spaces, 1991, 297  crossref
    15. Xavier Fernique, Probability in Banach Spaces 7, 1990, 83  crossref
    16. Peter Kotelenez, Stochastic Space—Time Models and Limit Theorems, 1985, 95  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:354
    Full-text PDF :145
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025