Abstract:
We propose a theoretical framework for explaining the numerically discovered phenomenon of the attractor-repeller merger. We identify regimes observed in dynamical systems with attractors as defined in a paper by Ruelle and show that these attractors can be of three different types. The first two types correspond to the well-known types of chaotic behavior, conservative and dissipative, while the attractors of the third type, reversible cores, provide a new type of chaos, the so-called mixed dynamics, characterized by the inseparability of dissipative and conservative regimes. We prove that every elliptic orbit of a generic non-conservative time-reversible system is a reversible core. We also prove that a generic reversible system with an elliptic orbit is universal; i.e., it displays dynamics of maximum possible richness and complexity.
The work presented in Sections 1, 2, and 4 is supported by the Russian Science Foundation under grant 14-41-00044. The work presented in Section 3 is supported by the Russian Science Foundation under grant 14-12-00811. The first author also thanks the Russian Foundation for Basic Research (project no. 16-01-00364) and the Ministry of Education and Science of the Russian Federation (project no. 1.3287.2017/PCh) for financial support. The second author also thanks the Royal Society, EPSRC, and the Imperial College Department of Mathematics Platform Grant for financial support.
Citation:
S. V. Gonchenko, D. V. Turaev, “On three types of dynamics and the notion of attractor”, Order and chaos in dynamical systems, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov, Trudy Mat. Inst. Steklova, 297, MAIK Nauka/Interperiodica, Moscow, 2017, 133–157; Proc. Steklov Inst. Math., 297 (2017), 116–137
\Bibitem{GonTur17}
\by S.~V.~Gonchenko, D.~V.~Turaev
\paper On three types of dynamics and the notion of attractor
\inbook Order and chaos in dynamical systems
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 297
\pages 133--157
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3822}
\crossref{https://doi.org/10.1134/S0371968517020078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3695410}
\elib{https://elibrary.ru/item.asp?id=28905726}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 297
\pages 116--137
\crossref{https://doi.org/10.1134/S0081543817040071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410199700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029162082}
Linking options:
https://www.mathnet.ru/eng/tm3822
https://doi.org/10.1134/S0371968517020078
https://www.mathnet.ru/eng/tm/v297/p133
This publication is cited in the following 50 articles:
A.J. Homburg, J.S.W. Lamb, D.V. Turaev, “Symmetric homoclinic tangles in reversible dynamical systems have positive topological entropy”, Advances in Mathematics, 464 (2025), 110131
Anastasiia A. Emelianova, Vladimir I. Nekorkin, “Synchronization and Chaos in Adaptive Kuramoto Networks with Higher-Order Interactions: A Review”, Regul. Chaot. Dyn., 30:1 (2025), 57
Marina S. Gonchenko, “On Bifurcations of Symmetric Elliptic Orbits”, Regul. Chaotic Dyn., 29:1 (2024), 25–39
Nikolay E. Kulagin, Lev M. Lerman, Konstantin N. Trifonov, “Twin Heteroclinic Connections of Reversible Systems”, Regul. Chaotic Dyn., 29:1 (2024), 40–64
Sergey A. Kashchenko, “Asymptotics of Self-Oscillations in Chains of Systems
of Nonlinear Equations”, Regul. Chaotic Dyn., 29:1 (2024), 218–240
S. V. Gonchenko, A. S. Gonchenko, K. E. Morozov, “The Third Type of Dynamics and Poincaré Homoclinic Trajectories”, Radiophys Quantum El, 66:9 (2024), 693
Toni L. Heugel, R. Chitra, Alexander Eichler, Oded Zilberberg, “Proliferation of unstable states and their impact on stochastic out-of-equilibrium dynamics in two coupled Kerr parametric oscillators”, Phys. Rev. E, 109:6 (2024)
Alexey Kazakov, Dmitrii Mints, Iuliia Petrova, Oleg Shilov, “On non-trivial hyperbolic sets and their bifurcations in families of diffeomorphisms of a two-dimensional torus”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34:8 (2024)
S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, E. A. Samylina, “Smeshannaya dinamika: elementy teorii i primery”, Izvestiya vuzov. PND, 32:6 (2024), 722–765
Pierre Berger, Dmitry Turaev, “Generators of groups of Hamiltonian maps”, Isr. J. Math., 2024
Ivan A. Bizyaev, Ivan S. Mamaev, “Roller Racer with Varying Gyrostatic Momentum:
Acceleration Criterion and Strange Attractors”, Regul. Chaotic Dyn., 28:1 (2023), 107–130
Russian Math. Surveys, 78:4 (2023), 635–777
Vladimir Chigarev, Alexey Kazakov, Arkady Pikovsky, “Attractor–repeller collision and the heterodimensional dynamics”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:6 (2023)
Dmitri Burago, Dong Chen, Sergei Ivanov, “Flexibility of sections of nearly integrable Hamiltonian systems”, Commun. Contemp. Math., 25:04 (2023)
Anastasiia A. Emelianova, Vladimir I. Nekorkin, “The Third Type of Chaos in a System of Adaptively Coupled Phase Oscillators with Higher-Order Interactions”, Mathematics, 11:19 (2023), 4024
A.A. Emelianova, V.I. Nekorkin, “The influence of nonisochronism on mixed dynamics in a system of two adaptively coupled rotators”, Chaos, Solitons & Fractals, 169 (2023), 113271
Svetoslav G. Nikolov, Vassil M. Vassilev, “Complex Dynamics of Rössler–Nikolov–Clodong O Hyperchaotic System: Analysis and Computations”, Axioms, 12:2 (2023), 185
D.S. Shchapin, A.A. Emelianova, V.I. Nekorkin, “A chaotic oscillation generator based on mixed dynamics of adaptively coupled Kuramoto oscillators”, Chaos, Solitons & Fractals, 166 (2023), 112989
S. Gonchenko, A. Kazakov, D. Turaev, L. Shilnikov, “Leonid Shilnikov and mathematical theory of dynamical chaos”, Chaos, 32:1 (2022), 010402
Marina S. Gonchenko, Alexey O. Kazakov, Evgeniya A. Samylina, Aikan Shykhmamedov, “On 1:3 Resonance Under Reversible Perturbations
of Conservative Cubic Hénon Maps”, Regul. Chaotic Dyn., 27:2 (2022), 198–216