Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Volume 297, Pages 133–157
DOI: https://doi.org/10.1134/S0371968517020078
(Mi tm3822)
 

This article is cited in 50 scientific papers (total in 50 papers)

On three types of dynamics and the notion of attractor

S. V. Gonchenkoa, D. V. Turaevab

a Lobachevsky State University of Nizhni Novgorod, pr. Gagarina 23, Nizhni Novgorod, 603950 Russia
b Department of Mathematics, Imperial College London, London SW7 2AZ, UK
References:
Abstract: We propose a theoretical framework for explaining the numerically discovered phenomenon of the attractor-repeller merger. We identify regimes observed in dynamical systems with attractors as defined in a paper by Ruelle and show that these attractors can be of three different types. The first two types correspond to the well-known types of chaotic behavior, conservative and dissipative, while the attractors of the third type, reversible cores, provide a new type of chaos, the so-called mixed dynamics, characterized by the inseparability of dissipative and conservative regimes. We prove that every elliptic orbit of a generic non-conservative time-reversible system is a reversible core. We also prove that a generic reversible system with an elliptic orbit is universal; i.e., it displays dynamics of maximum possible richness and complexity.
Funding agency Grant number
Russian Science Foundation 14-41-00044
14-12-00811
Russian Foundation for Basic Research 16-01-00364
Ministry of Education and Science of the Russian Federation 1.3287.2017/ПЧ
Royal Society
Engineering and Physical Sciences Research Council
Imperial College London
The work presented in Sections 1, 2, and 4 is supported by the Russian Science Foundation under grant 14-41-00044. The work presented in Section 3 is supported by the Russian Science Foundation under grant 14-12-00811. The first author also thanks the Russian Foundation for Basic Research (project no. 16-01-00364) and the Ministry of Education and Science of the Russian Federation (project no. 1.3287.2017/PCh) for financial support. The second author also thanks the Royal Society, EPSRC, and the Imperial College Department of Mathematics Platform Grant for financial support.
Received: February 27, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2017, Volume 297, Pages 116–137
DOI: https://doi.org/10.1134/S0081543817040071
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: Russian
Citation: S. V. Gonchenko, D. V. Turaev, “On three types of dynamics and the notion of attractor”, Order and chaos in dynamical systems, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov, Trudy Mat. Inst. Steklova, 297, MAIK Nauka/Interperiodica, Moscow, 2017, 133–157; Proc. Steklov Inst. Math., 297 (2017), 116–137
Citation in format AMSBIB
\Bibitem{GonTur17}
\by S.~V.~Gonchenko, D.~V.~Turaev
\paper On three types of dynamics and the notion of attractor
\inbook Order and chaos in dynamical systems
\bookinfo Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2017
\vol 297
\pages 133--157
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3822}
\crossref{https://doi.org/10.1134/S0371968517020078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3695410}
\elib{https://elibrary.ru/item.asp?id=28905726}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2017
\vol 297
\pages 116--137
\crossref{https://doi.org/10.1134/S0081543817040071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410199700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029162082}
Linking options:
  • https://www.mathnet.ru/eng/tm3822
  • https://doi.org/10.1134/S0371968517020078
  • https://www.mathnet.ru/eng/tm/v297/p133
  • This publication is cited in the following 50 articles:
    1. A.J. Homburg, J.S.W. Lamb, D.V. Turaev, “Symmetric homoclinic tangles in reversible dynamical systems have positive topological entropy”, Advances in Mathematics, 464 (2025), 110131  crossref
    2. Anastasiia A. Emelianova, Vladimir I. Nekorkin, “Synchronization and Chaos in Adaptive Kuramoto Networks with Higher-Order Interactions: A Review”, Regul. Chaot. Dyn., 30:1 (2025), 57  crossref
    3. Marina S. Gonchenko, “On Bifurcations of Symmetric Elliptic Orbits”, Regul. Chaotic Dyn., 29:1 (2024), 25–39  mathnet  crossref
    4. Nikolay E. Kulagin, Lev M. Lerman, Konstantin N. Trifonov, “Twin Heteroclinic Connections of Reversible Systems”, Regul. Chaotic Dyn., 29:1 (2024), 40–64  mathnet  crossref
    5. Sergey A. Kashchenko, “Asymptotics of Self-Oscillations in Chains of Systems of Nonlinear Equations”, Regul. Chaotic Dyn., 29:1 (2024), 218–240  mathnet  crossref
    6. S. V. Gonchenko, A. S. Gonchenko, K. E. Morozov, “The Third Type of Dynamics and Poincaré Homoclinic Trajectories”, Radiophys Quantum El, 66:9 (2024), 693  crossref
    7. Toni L. Heugel, R. Chitra, Alexander Eichler, Oded Zilberberg, “Proliferation of unstable states and their impact on stochastic out-of-equilibrium dynamics in two coupled Kerr parametric oscillators”, Phys. Rev. E, 109:6 (2024)  crossref
    8. Alexey Kazakov, Dmitrii Mints, Iuliia Petrova, Oleg Shilov, “On non-trivial hyperbolic sets and their bifurcations in families of diffeomorphisms of a two-dimensional torus”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34:8 (2024)  crossref
    9. S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, E. A. Samylina, “Smeshannaya dinamika: elementy teorii i primery”, Izvestiya vuzov. PND, 32:6 (2024), 722–765  mathnet  crossref
    10. Pierre Berger, Dmitry Turaev, “Generators of groups of Hamiltonian maps”, Isr. J. Math., 2024  crossref
    11. Ivan A. Bizyaev, Ivan S. Mamaev, “Roller Racer with Varying Gyrostatic Momentum: Acceleration Criterion and Strange Attractors”, Regul. Chaotic Dyn., 28:1 (2023), 107–130  mathnet  crossref  mathscinet
    12. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    13. Vladimir Chigarev, Alexey Kazakov, Arkady Pikovsky, “Attractor–repeller collision and the heterodimensional dynamics”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:6 (2023)  crossref
    14. Dmitri Burago, Dong Chen, Sergei Ivanov, “Flexibility of sections of nearly integrable Hamiltonian systems”, Commun. Contemp. Math., 25:04 (2023)  crossref
    15. Anastasiia A. Emelianova, Vladimir I. Nekorkin, “The Third Type of Chaos in a System of Adaptively Coupled Phase Oscillators with Higher-Order Interactions”, Mathematics, 11:19 (2023), 4024  crossref
    16. A.A. Emelianova, V.I. Nekorkin, “The influence of nonisochronism on mixed dynamics in a system of two adaptively coupled rotators”, Chaos, Solitons & Fractals, 169 (2023), 113271  crossref  mathscinet
    17. Svetoslav G. Nikolov, Vassil M. Vassilev, “Complex Dynamics of Rössler–Nikolov–Clodong O Hyperchaotic System: Analysis and Computations”, Axioms, 12:2 (2023), 185  crossref
    18. D.S. Shchapin, A.A. Emelianova, V.I. Nekorkin, “A chaotic oscillation generator based on mixed dynamics of adaptively coupled Kuramoto oscillators”, Chaos, Solitons & Fractals, 166 (2023), 112989  crossref  mathscinet
    19. S. Gonchenko, A. Kazakov, D. Turaev, L. Shilnikov, “Leonid Shilnikov and mathematical theory of dynamical chaos”, Chaos, 32:1 (2022), 010402  crossref  mathscinet  isi
    20. Marina S. Gonchenko, Alexey O. Kazakov, Evgeniya A. Samylina, Aikan Shykhmamedov, “On 1:3 Resonance Under Reversible Perturbations of Conservative Cubic Hénon Maps”, Regul. Chaotic Dyn., 27:2 (2022), 198–216  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:806
    Full-text PDF :331
    References:69
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025