Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 8, Pages 1068–1121
DOI: https://doi.org/10.1070/SM9435
(Mi sm9435)
 

This article is cited in 17 scientific papers (total in 17 papers)

Uniform convergence and asymptotics for problems in domains finely perforated along a prescribed manifold in the case of the homogenized Dirichlet condition

D. I. Borisovabc, A. I. Mukhametrakhimovad

a Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
b Bashkir State University, Ufa, Russia
c University of Hradec Králové, Hradec Králové, Czech Republic
d Bashkir State Pedagogical University n. a. M. Akmulla, Ufa, Russia
References:
Abstract: A boundary value problem for a second-order elliptic equation with variable coefficients is considered in a multidimensional domain which is perforated by small holes along a prescribed manifold. Minimal natural conditions are imposed on the holes. In particular, all of these are assumed to be of approximately the same size and have a prescribed minimal distance to neighbouring holes, which is also a small parameter. The shape of the holes and their distribution along the manifold are arbitrary. The holes are divided between two sets in an arbitrary way. The Dirichlet condition is imposed on the boundaries of holes in the first set and a nonlinear Robin boundary condition is imposed on the boundaries of holes in the second. The sizes and distribution of holes with the Dirichlet condition satisfy a simple and easily verifiable condition which ensures that these holes disappear after homogenization and a Dirichlet condition on the manifold in question arises instead. We prove that the solution of the perturbed problem converges to the solution of the homogenized one in the $W_2^1$-norm uniformly with respect to the right-hand side of the equation, and an estimate for the rate of convergence that is sharp in order is deduced. The full asymptotic solution of the perturbed problem is also constructed in the case when the holes form a periodic set arranged along a prescribed hyperplane.
Bibliography: 32 titles.
Keywords: perforated domain, boundary value problem, homogenization, uniform convergence, estimate for the rate of convergence, asymptotic.
Funding agency Grant number
Russian Science Foundation 20-11-19995
The research presented in § 5 was carried out using funding from the Russian Science Foundation under grant no. 20-11-19995.
Received: 30.04.2020 and 28.10.2020
Bibliographic databases:
Document Type: Article
UDC: 517.956+517.958
MSC: 35J15, 35B27
Language: English
Original paper language: Russian
Citation: D. I. Borisov, A. I. Mukhametrakhimova, “Uniform convergence and asymptotics for problems in domains finely perforated along a prescribed manifold in the case of the homogenized Dirichlet condition”, Sb. Math., 212:8 (2021), 1068–1121
Citation in format AMSBIB
\Bibitem{BorMuk21}
\by D.~I.~Borisov, A.~I.~Mukhametrakhimova
\paper Uniform convergence and asymptotics for problems in domains finely perforated along a~prescribed manifold in the case of the homogenized Dirichlet condition
\jour Sb. Math.
\yr 2021
\vol 212
\issue 8
\pages 1068--1121
\mathnet{http://mi.mathnet.ru/eng/sm9435}
\crossref{https://doi.org/10.1070/SM9435}
\zmath{https://zbmath.org/?q=an:1480.35140}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1068B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000707456500001}
\elib{https://elibrary.ru/item.asp?id=47525346}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118893268}
Linking options:
  • https://www.mathnet.ru/eng/sm9435
  • https://doi.org/10.1070/SM9435
  • https://www.mathnet.ru/eng/sm/v212/i8/p33
  • This publication is cited in the following 17 articles:
    1. D. I. Borisov, “Operator estimates for non-periodically perforated domains: disappearance of cavities”, Applicable Analysis, 103:5 (2024), 859–873  crossref  mathscinet
    2. Denis I. Borisov, “Operator estimates for non‐periodically perforated domains with Dirichlet and nonlinear Robin conditions: Strange term”, Math Methods in App Sciences, 47:6 (2024), 4122  crossref  mathscinet
    3. J. I. Díaz, T. A. Shaposhnikova, A. V. Podolskiy, “Aperiodical Isoperimetric Planar Homogenization with Critical Diameter: Universal Non-local Strange Term for a Dynamical Unilateral Boundary Condition”, Dokl. Math., 2024  crossref
    4. J. I. Diaz, T. A. Shaposhnikova, A. V. Podolskiy, “Aperiodical isoperimetric planar homogenization with critical diameter: universal non-local strange term for a dynamical unilateral boundary condition”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 515:1 (2024), 18  crossref
    5. A. I. Mukhametrakhimova, “Operator estimates for non–periodic perforation along boundary: homogenized Dirichlet condition”, Ufa Math. J., 16:4 (2024), 83–93  mathnet  crossref
    6. D. I. Borisov, “Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms”, Math. Notes, 113:1 (2023), 138–142  mathnet  crossref  crossref  mathscinet
    7. A. Khrabustovskyi, “Operator estimates for the Neumann sieve problem”, Ann. Mat. Pura Appl. (4), 202:4 (2023), 1955–1990  crossref  mathscinet  zmath
    8. D. I. Borisov, J. Kříž, “Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: vanishing limit”, Anal. Math. Phys., 13:1 (2023), 5  crossref  mathscinet
    9. D. I. Borisov, “Geometric approximation of point interactions in two-dimensional domains for non-self-adjoint operators”, Mathematics, 11:4 (2023), 947  crossref  mathscinet
    10. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. D. I. Borisov, D. M. Polyakov, “Resolvent convergence for differential–difference operators with small variable translations”, Mathematics, 11:20 (2023), 4260  crossref
    12. D. I. Borisov, “Homogenization for operators with arbitrary perturbations in coefficients”, Journal of Differential Equations, 369 (2023), 41  crossref  mathscinet  zmath
    13. D. I. Borisov, A. I. Mukhametrakhimova, “Uniform convergence for problems with perforation alogn a given manifold and with a nonlinear Robin condition on the boundaries of cavities”, St. Petersburg Math. J., 35:4 (2024), 611–652  mathnet  crossref
    14. D. I. Borisov, A. I. Mukhametrakhimova, “Asymptotics for problems in perforated domains with Robin nonlinear condition on the boundaries of cavities”, Sb. Math., 213:10 (2022), 1318–1371  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. D. I. Borisov, M. N. Konyrkulzhaeva, “Operator $L_2$ -estimates for two-dimensional problems with rapidly alternating boundary conditions”, J. Math. Sci. (N.Y.), 267:3 (2022), 319–337  crossref  mathscinet  zmath
    16. D. I. Borisov, “Operator estimates for planar domains with irregularly curved boundary. The Dirichlet and Neumann conditions”, J. Math. Sci. (N.Y.), 264:5 (2022), 562–580  crossref  mathscinet  zmath
    17. D. I. Borisov, “Asymptotic expansion of solution to Dirichlet problem in perforated domain: strange term case”, Ufa Math. J., 14:4 (2022), 26–41  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:462
    Russian version PDF:138
    English version PDF:54
    Russian version HTML:189
    References:52
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025