Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 1, Pages 1–42
DOI: https://doi.org/10.1070/SM2013v204n01ABEH004290
(Mi sm8126)
 

This article is cited in 26 scientific papers (total in 26 papers)

Regular attractors and nonautonomous perturbations of them

M. I. Vishika, S. V. Zelikb, V. V. Chepyzhovac

a Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow
b University of Surrey, Guildford, United Kingdom
c National Research University Higher School of Economics, Moscow
References:
Abstract: We study regular global attractors of dissipative dynamical semigroups with discrete or continuous time and we investigate attractors for nonautonomous perturbations of such semigroups. The main theorem states that the regularity of global attractors is preserved under small nonautonomous perturbations. Moreover, nonautonomous regular global attractors remain exponential and robust. We apply these general results to model nonautonomous reaction-diffusion systems in a bounded domain of R3 with time-dependent external forces.
Bibliography: 22 titles.
Keywords: dynamical semigroups and processes, regular attractors, uniform attractors, pullback attractors.
Received: 02.04.2012
Bibliographic databases:
Document Type: Article
UDC: 517.956.8
MSC: Primary 35B41, 37B55, 35B40; Secondary 37C70, 37C60, 35K57
Language: English
Original paper language: Russian
Citation: M. I. Vishik, S. V. Zelik, V. V. Chepyzhov, “Regular attractors and nonautonomous perturbations of them”, Sb. Math., 204:1 (2013), 1–42
Citation in format AMSBIB
\Bibitem{VisZelChe13}
\by M.~I.~Vishik, S.~V.~Zelik, V.~V.~Chepyzhov
\paper Regular attractors and nonautonomous perturbations of them
\jour Sb. Math.
\yr 2013
\vol 204
\issue 1
\pages 1--42
\mathnet{http://mi.mathnet.ru/eng/sm8126}
\crossref{https://doi.org/10.1070/SM2013v204n01ABEH004290}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3060075}
\zmath{https://zbmath.org/?q=an:06197054}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204....1V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317573800001}
\elib{https://elibrary.ru/item.asp?id=19066594}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876563242}
Linking options:
  • https://www.mathnet.ru/eng/sm8126
  • https://doi.org/10.1070/SM2013v204n01ABEH004290
  • https://www.mathnet.ru/eng/sm/v204/i1/p3
  • This publication is cited in the following 26 articles:
    1. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Andrew Comech, Alexander Komech, Mikhail Vishik, Trends in Mathematics, Partial Differential Equations and Functional Analysis, 2023, 259  crossref
    3. Dmitrenko A.V., “Theoretical Solutions For Spectral Function of the Turbulent Medium Based on the Stochastic Equations and Equivalence of Measures”, Continuum Mech. Thermodyn., 33:3 (2021), 603–610  crossref  mathscinet  isi
    4. Dmitrenko A.V., “Determination of Critical Reynolds Number For the Flow Near a Rotating Disk on the Basis of the Theory of Stochastic Equations and Equivalence of Measures”, Fluids, 6:1 (2021), 5  crossref  isi
    5. Dmitrenko A.V., “The Correlation Dimension of An Attractor Determined on the Base of the Theory of Equivalence of Measures and Stochastic Equations For Continuum”, Continuum Mech. Thermodyn., 32:1 (2020), 63–74  crossref  mathscinet  isi
    6. Cheban D., “The Structure of Global Attractors For Non-Autonomous Perturbations of Gradient-Like Dynamical Systems”, J. Dyn. Differ. Equ., 32:3 (2020), 1113–1138  crossref  mathscinet  zmath  isi  scopus
    7. A V Dmitrenko, “The Spectrum of the turbulence based on theory of stochastic equations and equivalenceof measures”, J. Phys.: Conf. Ser., 1705:1 (2020), 012021  crossref
    8. A V Dmitrenko, “Determination of critical Reynolds number in the jet based on the theory of stochastic equations and equivalence of measures”, J. Phys.: Conf. Ser., 1705:1 (2020), 012015  crossref
    9. Ju X., Li D., Duan J., “Forward Attraction of Pullback Attractors and Synchronizing Behavior of Gradient-Like Systems With Nonautonomous Perturbations”, Discrete Contin. Dyn. Syst.-Ser. B, 24:3, SI (2019), 1175–1197  crossref  mathscinet  zmath  isi
    10. A V Dmitrenko, “The construction of the portrait of the correlation dimension of an attractor in the boundary layer of Earth's atmosphere”, J. Phys.: Conf. Ser., 1301:1 (2019), 012006  crossref
    11. A V Dmitrenko, “Determination of the correlation dimension of an attractor in a pipe based on the theory of stochastic equations and equivalence of measures”, J. Phys.: Conf. Ser., 1250:1 (2019), 012001  crossref
    12. X. Ju, D. Li, “Global synchronising behavior of evolution equations with exponentially growing nonautonomous forcing”, Commun. Pure Appl. Anal, 17:5 (2018), 1921–1944  crossref  mathscinet  zmath  isi  scopus
    13. A. Kostianko, E. Titi, S. Zelik, “Large dispersion, averaging and attractors: three 1D paradigms”, Nonlinearity, 31:12 (2018), R317–R350  crossref  mathscinet  zmath  isi
    14. A. V. Akhmetzyanov, A. G. Kushner, V. V. Lychagin, “Attractors in models of porous media flow”, Dokl. Math., 95:1 (2017), 72–75  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    15. D.-C. Chang, B.-W. Schulze, “Calculus on spaces with higher singularities”, J. Pseudo-Differ. Oper. Appl., 8:4 (2017), 585  crossref
    16. D. Cheban, C. Mammana, E. Michetti, “The structure of global attractors for non-autonomous perturbations of discrete gradient-like dynamical systems”, J. Difference Equ. Appl., 22:11 (2016), 1673–1697  crossref  mathscinet  zmath  isi  scopus
    17. M. Canadell, R. de la Llave, “KAM tori and whiskered invariant tori for non-autonomous systems”, Phys. D, 310 (2015), 104–113  crossref  mathscinet  zmath  isi  elib  scopus
    18. M. I. Vishik, S. Zelik, “Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit”, Commun. Pure Appl. Anal., 13:5 (2014), 2059–2093  crossref  mathscinet  zmath  isi  elib  scopus
    19. S. V. Zelik, V. V. Chepyzhov, “Regular attractors of autonomous and nonautonomous dynamical systems”, Dokl. Math., 89:1 (2014), 92–97  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    20. S. Zelik, “Inertial manifolds and finite-dimensional reduction for dissipative PDEs”, Proc. Roy. Soc. Edinburgh Sect. A, 144:6 (2014), 1245–1327  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1306
    Russian version PDF:311
    English version PDF:39
    References:124
    First page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025