Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 6, Pages 803–834
DOI: https://doi.org/10.1070/sm1999v190n06ABEH000411
(Mi sm411)
 

This article is cited in 13 scientific papers (total in 13 papers)

Regular attractor for a non-linear elliptic system in a cylindrical domain

M. I. Vishika, S. V. Zelikb

a Institute for Information Transmission Problems, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University
References:
Abstract: The system of second-order elliptic equations
a(2tu+Δxu)γtuf(u)=g(t),u|ω=0,\enskipu|t=0=u0,\enskip(t,x)Ω+,
is considered in the half-cylinder Ω+=R+×ω, ωRn. Here u=(u1,,uk) is an unknown vector-valued function, a and γ are fixed positive-definite self-adjoint (k×k)-matrices, f and g(t)=g(t,x) are fixed functions. It is proved under certain natural conditions on the matrices a and γ, the non-linear function f, and the right-hand side g that the boundary-value problem (1) has a unique solution in the space W2,ploc(Ω+,Rk), p>(n+1)/2, that is bounded as t. Moreover, it is established that the problem (1) is equivalent in the class of such solutions to an evolution problem in the space of “initial data” u0V0Trt=0W2,ploc(Ω+,Rk). In the potential case (f=xP,  g(t,x)g(x)) it is shown that the semigroup St:V0V0 generated by (1) possesses an attractor in the space V0 which is generically the union of finite-dimensional unstable manifolds M+(zi) corresponding to the equilibria zi of St (Stzi=zi). In addition, an explicit formula for the dimensions of these manifolds is obtained.
Received: 20.11.1998
Bibliographic databases:
UDC: 517.95
MSC: Primary 35J60; Secondary 35B40
Language: English
Original paper language: Russian
Citation: M. I. Vishik, S. V. Zelik, “Regular attractor for a non-linear elliptic system in a cylindrical domain”, Sb. Math., 190:6 (1999), 803–834
Citation in format AMSBIB
\Bibitem{VisZel99}
\by M.~I.~Vishik, S.~V.~Zelik
\paper Regular attractor for a~non-linear elliptic system in a~cylindrical domain
\jour Sb. Math.
\yr 1999
\vol 190
\issue 6
\pages 803--834
\mathnet{http://mi.mathnet.ru/eng/sm411}
\crossref{https://doi.org/10.1070/sm1999v190n06ABEH000411}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1719581}
\zmath{https://zbmath.org/?q=an:0940.35085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083433500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033241007}
Linking options:
  • https://www.mathnet.ru/eng/sm411
  • https://doi.org/10.1070/sm1999v190n06ABEH000411
  • https://www.mathnet.ru/eng/sm/v190/i6/p23
  • This publication is cited in the following 13 articles:
    1. Caidi Zhao, “Absorbing estimate implies trajectory statistical solutions for nonlinear elliptic equations in half-cylindrical domains”, Math. Ann., 2024  crossref
    2. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Andrew Comech, Alexander Komech, Mikhail Vishik, Trends in Mathematics, Partial Differential Equations and Functional Analysis, 2023, 259  crossref
    4. Lerman L.M., Naryshkin P.E., Nazarov I A., “Abundance of Entire Solutions to Nonlinear Elliptic Equations By the Variational Method”, Nonlinear Anal.-Theory Methods Appl., 190 (2020), UNSP 111590  crossref  mathscinet  isi
    5. Isaev O.V., Kravchenko A.S., Irkhin V.P., “Method For Modeling Accuracy Measuring in Evaluation of Sustainability of Information Structure Security System in Terms of Negative Impacts”, 2017 2Nd International Ural Conference on Measurements (Uralcon), IEEE, 2017, 205–210  crossref  isi  scopus  scopus
    6. Mark Vishik, Sergey Zelik, “Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit”, CPAA, 13:5 (2014), 2059  crossref  mathscinet  zmath  scopus  scopus  scopus
    7. Zelik S., “Inertial Manifolds and Finite-Dimensional Reduction For Dissipative PDEs”, Proc. R. Soc. Edinb. Sect. A-Math., 144:6 (2014), 1245–1327  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. Radoslaw Czaja, Messoud Efendiev, “Pullback exponential attractors for nonautonomous equations Part II: Applications to reaction???diffusion systems”, Journal of Mathematical Analysis and Applications, 2011  crossref  mathscinet  isi  scopus  scopus  scopus
    9. M. I. Vishik, V. V. Chepyzhov, “Trajectory attractors of equations of mathematical physics”, Russian Math. Surveys, 66:4 (2011), 637–731  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. Zelik, SV, “Spatial and dynamical chaos generated by reaction-diffusion systems in unbounded domains”, Journal of Dynamics and Differential Equations, 19:1 (2007), 1  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    11. Matthies, K, “Homogenisation of exponential order for elliptic systems in infinite cylinders”, Asymptotic Analysis, 43:3 (2005), 205  mathscinet  zmath  isi  elib
    12. A. Mielke, S. V. Zelik, “Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains”, Russian Math. Surveys, 57:4 (2002), 753–784  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. Efendiev, M, “Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization”, Annales de l Institut Henri Poincare-Analyse Non Lineaire, 19:6 (2002), 961  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:692
    Russian version PDF:226
    English version PDF:36
    References:96
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025