Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1986, Volume 54, Issue 2, Pages 387–408
DOI: https://doi.org/10.1070/SM1986v054n02ABEH002976
(Mi sm1943)
 

This article is cited in 53 scientific papers (total in 54 papers)

Maximal attractors of semigroups corresponding to evolution differential equations

A. V. Babin, M. I. Vishik
References:
Abstract: The purpose of this article is to study generalizations and refinements presented here for the concepts of boundedness and attraction, and to subsequently apply the results to concrete objects.
Bibliography: 8 titles.
Received: 26.06.1984
Bibliographic databases:
UDC: 517.95
MSC: Primary 35K22, 47D05, 58F12; Secondary 47B44, 58D25
Language: English
Original paper language: Russian
Citation: A. V. Babin, M. I. Vishik, “Maximal attractors of semigroups corresponding to evolution differential equations”, Math. USSR-Sb., 54:2 (1986), 387–408
Citation in format AMSBIB
\Bibitem{BabVis85}
\by A.~V.~Babin, M.~I.~Vishik
\paper Maximal attractors of semigroups corresponding to evolution differential equations
\jour Math. USSR-Sb.
\yr 1986
\vol 54
\issue 2
\pages 387--408
\mathnet{http://mi.mathnet.ru/eng/sm1943}
\crossref{https://doi.org/10.1070/SM1986v054n02ABEH002976}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=783953}
\zmath{https://zbmath.org/?q=an:0611.35033}
Linking options:
  • https://www.mathnet.ru/eng/sm1943
  • https://doi.org/10.1070/SM1986v054n02ABEH002976
  • https://www.mathnet.ru/eng/sm/v168/i3/p397
  • This publication is cited in the following 54 articles:
    1. Xuesi Kong, Xingjie Yan, Rong Yang, “Global Attractor and Singular Limits of the 3D Voigt-regularized Magnetohydrodynamic Equations”, J. Math. Fluid Mech., 27:1 (2025)  crossref
    2. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Florentine Catharina Fleißner, “Minimal solutions to generalized Λ-semiflows and gradient flows in metric spaces”, Annali di Matematica, 202:1 (2023), 307  crossref
    4. Chepyzhov V., Ilyin A., Zelik S., “Vanishing Viscosity Limit For Global Attractors For the Damped Navier–Stokes System With Stress Free Boundary Conditions”, Physica D, 376:SI (2018), 31–38  crossref  mathscinet  zmath  isi
    5. Michael Z. Zgurovsky, Pavlo O. Kasyanov, Studies in Systems, Decision and Control, 111, Qualitative and Quantitative Analysis of Nonlinear Systems, 2018, 125  crossref
    6. Yejuan Wang, Meiyu Sui, “Finite lattice approximation of infinite lattice systems with delays and non-Lipschitz nonlinearities”, ASY, 106:3-4 (2018), 169  crossref
    7. A. A. Ilyin, V. V. Chepyzhov, “On Strong Convergence of Attractors of Navier–Stokes Equations in the Limit of Vanishing Viscosity”, Math. Notes, 101:4 (2017), 746–750  mathnet  crossref  crossref  mathscinet  isi  elib
    8. Grzegorz Łukaszewicz, Piotr Kalita, Advances in Mechanics and Mathematics, Navier–Stokes Equations, 2016, 337  crossref
    9. Mikhail Z. Zgurovsky, Pavlo O. Kasyanov, Solid Mechanics and Its Applications, 211, Continuous and Distributed Systems, 2014, 149  crossref
    10. Wenyan Zhao, Zhibo Zheng, “On the Incompressible Navier–Stokes Equations with Damping”, AM, 04:04 (2013), 652  crossref
    11. P. O. Kas'yanov, “Multivalued Dynamics of Solutions of Autonomous Operator Differential Equations with Pseudomonotone Nonlinearity”, Math. Notes, 92:2 (2012), 205–218  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    12. Razafimandimby P.A., “Trajectory Attractor for a Non-Autonomous Magnetohydrodynamic Equation of Non-Newtonian Fluids”, Dyn. Partial Differ. Equ., 9:3 (2012), 177–203  crossref  mathscinet  zmath  isi
    13. Mikhail Z. Zgurovsky, Pavlo O. Kasyanov, Oleksiy V. Kapustyan, José Valero, Nina V. Zadoianchuk, Advances in Mechanics and Mathematics, 27, Evolution Inclusions and Variation Inequalities for Earth Data Processing III, 2012, 3  crossref
    14. Vorotnikov D., “Asymptotic Behavior of the Non-Autonomous 3D Navier–Stokes Problem with Coercive Force”, J. Differ. Equ., 251:8 (2011), 2209–2225  crossref  mathscinet  zmath  isi  elib
    15. Miranville A., Schimperna G., “On a Doubly Nonlinear Cahn-Hilliard-Gurtin System”, Discrete Contin. Dyn. Syst.-Ser. B, 14:2, SI (2010), 675–697  crossref  mathscinet  zmath  isi
    16. Balibrea F., Caraballo T., Kloeden P.E., Valero J., “Recent Developments in Dynamical Systems: Three Perspectives”, Int. J. Bifurcation Chaos, 20:9 (2010), 2591–2636  crossref  mathscinet  zmath  isi  elib
    17. Kapustyan O.V., Valero J., “Comparison Between Trajectory and Global Attractors for Evolution Systems Without Uniqueness of Solutions”, Int. J. Bifurcation Chaos, 20:9 (2010), 2723–2734  crossref  mathscinet  zmath  isi  elib
    18. Grasselli M., Schimperna G., Zelik S., “Trajectory and Smooth Attractors for Cahn-Hilliard Equations with Inertial Term”, Nonlinearity, 23:3 (2010), 707–737  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. Morillas F., Valero J., “On the Kneser Property for Reaction-Diffusion Systems on Unbounded Domains”, Topology Appl., 156:18 (2009), 3029–3040  crossref  mathscinet  zmath  isi  elib
    20. Grasselli M., Schimperna G., Segatti A., Zelik S., “On the 3D Cahn-Hilliard Equation with Inertial Term”, J. Evol. Equ., 9:2 (2009), 371–404  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:780
    Russian version PDF:218
    English version PDF:29
    References:86
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025