Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 12, Pages 1755–1789
DOI: https://doi.org/10.1070/SM1996v187n12ABEH000177
(Mi sm177)
 

This article is cited in 30 scientific papers (total in 31 papers)

The trajectory attractor of a non-linear elliptic system in a cylindrical domain

M. I. Vishika, S. V. Zelikb

a Institute for Information Transmission Problems, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University
References:
Abstract: In the half-cylinder Ω+=R+×ω, ωRn, we study a second-order system of elliptic equations containing a non-linear function f(u,x0,x)=(f1,,fk) and right-hand side g(x0,x)=(g1,,gk), x0R+, xω. If these functions satisfy certain conditions, then it is proved that the first boundary-value problem for this system has at least one solution belonging to the space [Hloc2,p(Ω+)]k, p>n+1. We study the behaviour of the solutions u(x0,x) of this system a x0+. Along with the original system we study the family of systems obtained from it through shifting with respect to x0 by all h, h0. A semigroup {T(h), h0}, T(h)u(x0,)=u(x0+h,) acts on the set of solutions K+ of these systems of equations. It is proved that this semigroup has a trajectory attractor A consisting of the solutions v(x0,x) in K+ that admit a bounded extension to the entire cylinder Ω=R×ω. Solutions u(x0,x)K+ are attracted by the attractor A as x0+. We give a number of applications and consider some questions of the theory of perturbations of the original system of equations.
Received: 26.08.1996
Bibliographic databases:
UDC: 517.95
MSC: Primary 35J60; Secondary 35B35
Language: English
Original paper language: Russian
Citation: M. I. Vishik, S. V. Zelik, “The trajectory attractor of a non-linear elliptic system in a cylindrical domain”, Sb. Math., 187:12 (1996), 1755–1789
Citation in format AMSBIB
\Bibitem{VisZel96}
\by M.~I.~Vishik, S.~V.~Zelik
\paper The trajectory attractor of a~non-linear elliptic system in a~cylindrical domain
\jour Sb. Math.
\yr 1996
\vol 187
\issue 12
\pages 1755--1789
\mathnet{http://mi.mathnet.ru/eng/sm177}
\crossref{https://doi.org/10.1070/SM1996v187n12ABEH000177}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1442210}
\zmath{https://zbmath.org/?q=an:0871.35016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WQ48500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030527005}
Linking options:
  • https://www.mathnet.ru/eng/sm177
  • https://doi.org/10.1070/SM1996v187n12ABEH000177
  • https://www.mathnet.ru/eng/sm/v187/i12/p21
  • This publication is cited in the following 31 articles:
    1. Caidi Zhao, “Absorbing estimate implies trajectory statistical solutions for nonlinear elliptic equations in half-cylindrical domains”, Math. Ann., 2024  crossref
    2. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Andrew Comech, Alexander Komech, Mikhail Vishik, Trends in Mathematics, Partial Differential Equations and Functional Analysis, 2023, 259  crossref
    4. Songsong Lu, “Strongly compact strong trajectory attractors for evolutionary systems and their applications”, ASY, 133:1-2 (2023), 13  crossref
    5. Diego Berti, Luca Bisconti, Paolo Maria Mariano, “Energy Decay in the Dynamics of Complex Bodies with Spreading Microstructures Represented by 3D Vectors”, J Elast, 2022  crossref
    6. A. K. Savostianov, S. V. Zelik, “Uniform attractors for measure-driven quintic wave equations”, Russian Math. Surveys, 75:2 (2020), 253–320  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Cooper Sh. Savostianov A., “Homogenisation With Error Estimates of Attractors For Damped Semi-Linear Anisotropic Wave Equations”, Adv. Nonlinear Anal., 9:1 (2020), 745–787  crossref  mathscinet  zmath  isi
    8. Mei X., Sun Ch., “Attractors For a Sup-Cubic Weakly Damped Wave Equation in R-3”, Discrete Contin. Dyn. Syst.-Ser. B, 24:8, SI (2019), 4117–4143  crossref  mathscinet  zmath  isi
    9. Messoud Efendiev, Fields Institute Monographs, 36, Symmetrization and Stabilization of Solutions of Nonlinear Elliptic Equations, 2018, 71  crossref
    10. V. V. Chepyzhov, “Approximating the trajectory attractor of the 3D Navier-Stokes system using various α-models of fluid dynamics”, Sb. Math., 207:4 (2016), 610–638  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Savostianov A., “Infinite energy solutions for critical wave equation with fractional damping in unbounded domains”, Nonlinear Anal.-Theory Methods Appl., 136 (2016), 136–167  crossref  mathscinet  zmath  isi  scopus
    12. Savostianov A., “Strichartz Estimates and Smooth Attractors For a Sub-Quintic Wave Equation With Fractional Damping in Bounded Domains”, Adv. Differ. Equat., 20:5-6 (2015), 495–530  mathscinet  zmath  isi
    13. Mark Vishik, Sergey Zelik, “Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit”, CPAA, 13:5 (2014), 2059  crossref  mathscinet  zmath  scopus  scopus  scopus
    14. M. I. Vishik, V. V. Chepyzhov, “Trajectory attractors of equations of mathematical physics”, Russian Math. Surveys, 66:4 (2011), 637–731  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    15. Sergey Zelik, International Mathematical Series, 7, Instability in Models Connected with Fluid Flows II, 2008, 255  crossref
    16. Vladimir Chepyzhov, Mark Vishik, International Mathematical Series, 6, Instability in Models Connected with Fluid Flows I, 2008, 135  crossref
    17. Vishik, MI, “The global attractor of the nonautonomous 2D Navier–Stokes system with singularly oscillating external force”, Doklady Mathematics, 75:2 (2007), 236  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    18. Zelik, S, “Global averaging and parametric resonances in damped semilinear wave equations”, Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 136 (2006), 1053  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    19. A.V. Babin, Handbook of Dynamical Systems, 1, 2006, 983  crossref
    20. Matthies, K, “Homogenisation of exponential order for elliptic systems in infinite cylinders”, Asymptotic Analysis, 43:3 (2005), 205  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:576
    Russian version PDF:232
    English version PDF:27
    References:67
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025