Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2021, Volume 76, Issue 5, Pages 745–819
DOI: https://doi.org/10.1070/RM9973
(Mi rm9973)
 

This article is cited in 17 scientific papers (total in 17 papers)

Efficient asymptotics of solutions to the Cauchy problem with localized initial data for linear systems of differential and pseudodifferential equations

S. Yu. Dobrokhotova, V. E. Nazaikinskiia, A. I. Shafarevichbacd

a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Moscow Institute of Physics and Technology (National Research University), Moscow, Russia
d National Research Centre "Kurchatov Institute", Moscow, Russia
References:
Abstract: We say that the initial data in the Cauchy problem are localized if they are given by functions concentrated in a neighbourhood of a submanifold of positive codimension, and the size of this neighbourhood depends on a small parameter and tends to zero together with the parameter. Although the solutions of linear differential and pseudodifferential equations with localized initial data constitute a relatively narrow subclass of the set of all solutions, they are very important from the point of view of physical applications. Such solutions, which arise in many branches of mathematical physics, describe the propagation of perturbations of various natural phenomena (tsunami waves caused by an underwater earthquake, electromagnetic waves emitted by antennas, etc.), and there is extensive literature devoted to such solutions (including the study of their asymptotic behaviour). It is natural to say that an asymptotics is efficient when it makes it possible to examine the problem quickly enough with relatively few computations. The notion of efficiency depends on the available computational tools and has changed significantly with the advent of \textsf{Wolfram Mathematica}, \textsf{Matlab}, and similar computing systems, which provide fundamentally new possibilities for the operational implementation and visualization of mathematical constructions, but which also impose new requirements on the construction of the asymptotics. We give an overview of modern methods for constructing efficient asymptotics in problems with localized initial data. The class of equations and systems under consideration includes the Schrödinger and Dirac equations, the Maxwell equations, the linearized gasdynamic and hydrodynamic equations, the equations of the linear theory of surface water waves, the equations of the theory of elasticity, the acoustic equations, and so on.
Bibliography: 109 titles.
Keywords: differential equations, semiclassical asymptotics, efficient asymptotics, Maslov canonical operator, Cauchy problem, localized initial conditions.
Funding agency Grant number
Russian Foundation for Basic Research 19-11-50111
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 19-11-50111).
Received: 30.08.2020
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Efficient asymptotics of solutions to the Cauchy problem with localized initial data for linear systems of differential and pseudodifferential equations”, Russian Math. Surveys, 76:5 (2021), 745–819
Citation in format AMSBIB
\Bibitem{DobNazSha21}
\by S.~Yu.~Dobrokhotov, V.~E.~Nazaikinskii, A.~I.~Shafarevich
\paper Efficient asymptotics of solutions to the Cauchy problem with localized initial data for linear systems of differential and pseudodifferential equations
\jour Russian Math. Surveys
\yr 2021
\vol 76
\issue 5
\pages 745--819
\mathnet{http://mi.mathnet.ru/eng/rm9973}
\crossref{https://doi.org/10.1070/RM9973}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4324041}
\zmath{https://zbmath.org/?q=an:1492.81056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000738244000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123521719}
Linking options:
  • https://www.mathnet.ru/eng/rm9973
  • https://doi.org/10.1070/RM9973
  • https://www.mathnet.ru/eng/rm/v76/i5/p3
  • This publication is cited in the following 17 articles:
    1. S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Metod osredneniya dlya zadach o kvaziklassicheskikh asimptotikakh”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, SMFN, 70, no. 1, Rossiiskii universitet druzhby narodov, M., 2024, 53–76  mathnet  crossref
    2. V.E. Nazaikinskii, “Semiclassical Asymptotics on Stratified Manifolds”, Russ. J. Math. Phys., 31:2 (2024), 299  crossref
    3. S.Yu. Dobrokhotov, E.S. Smirnova, “Asymptotics of the Solution of the Initial Boundary Value Problem for the One-Dimensional Klein–Gordon Equation with Variable Coefficients”, Russ. J. Math. Phys., 31:2 (2024), 187  crossref
    4. S. Yu. Dobrokhotov, V. E. Nazaikinskii, “On the arguments of Jacobians in local expressions of the Maslov canonical operator”, Math. Notes, 116:6 (2024), 1264–1276  mathnet  mathnet  crossref
    5. V.E. Nazaikinskii, “On the Phase Spaces for a Class of Boundary-Degenerate Equations”, Russ. J. Math. Phys., 31:4 (2024), 713  crossref
    6. A. T. Fomenko, A. I. Shafarevich, V. A. Kibkalo, “Glavnye napravleniya i dostizheniya kafedry differentsialnoi geometrii i prilozhenii na sovremennom etape”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2024, no. 6, 27–37  mathnet  crossref  elib
    7. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rouleux, “Lagrangian manifolds and the construction of asymptotics for (pseudo)differential equations with localized right-hand sides”, Theoret. and Math. Phys., 214:1 (2023), 1–23  mathnet  crossref  crossref  mathscinet  adsnasa
    8. S. Yu. Dobrokhotov, S. B. Levin, A. A. Tolchennikov, “Keplerian orbits and global asymptotic solution in the form of an Airy function for the scattering problem on a repulsive Coulomb potential”, Russian Math. Surveys, 78:4 (2023), 788–790  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. E. S. Smirnova, “Asymptotics of the Solution of an Initial–Boundary Value Problem for the One-Dimensional Klein–Gordon Equation on the Half-Line”, Math. Notes, 114:4 (2023), 608–618  mathnet  crossref  crossref
    10. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. D. S. Minenkov, S. A. Sergeev, “Asymptotics of the whispering gallery-type in the eigenproblem for the Laplacian in a domain of revolution diffeomorphic to a solid torus”, Russ. J. Math. Phys., 30:4 (2023), 599  crossref  mathscinet
    12. V. L. Chernyshev, V. E. Nazaikinskii, A. V. Tsvetkova, “Lattice equations and semiclassical asymptotics”, Russ. J. Math. Phys., 30:2 (2023), 152  crossref  mathscinet  zmath
    13. V. E. Nazaikinskii, “Canonical Operator on Punctured Lagrangian Manifolds and Commutation with Pseudodifferential Operators: Local Theory”, Math. Notes, 112:5 (2022), 709–725  mathnet  crossref  crossref  mathscinet
    14. S. Yu. Dobrokhotov, A. A. Tolchennikov, “Keplerian trajectories and an asymptotic solution of the Schrödinger equation with repulsive Coulomb potential and localized right-hand side”, Russ. J. Math. Phys., 29:4 (2022), 456–466  crossref  mathscinet
    15. S. Yu. Dobrokhotov, S. A. Sergeev, “Asymptotics of the solution of the Cauchy problem with localized initial conditions for a wave type equation with time dispersion. I. Basic structures”, Russ. J. Math. Phys., 29:2 (2022), 149–169  crossref  mathscinet  zmath
    16. S. A. Sergeev, “Asymptotic solution of the Cauchy problem with localized initial data for a wave equation with small dispersion effects”, Differ. Equ.  crossref  crossref  mathscinet  zmath  elib
    17. 58, no. 10, 2022, 1376–1395  crossref  crossref  mathscinet  zmath  elib
    18. V. E. Nazaikinskii, A. Yu. Savin, “On semiclassical asymptotics for nonlocal equations”, Russ. J. Math. Phys., 29:4 (2022), 568–575  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:659
    Russian version PDF:224
    English version PDF:103
    Russian version HTML:111
    References:66
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025