\Bibitem{Rom96}
\by A.~V.~Romanov
\paper On the limit dynamics of evolution equations
\jour Russian Math. Surveys
\yr 1996
\vol 51
\issue 2
\pages 345--346
\mathnet{http://mi.mathnet.ru/eng/rm962}
\crossref{https://doi.org/10.1070/RM1996v051n02ABEH002888}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1401554}
\zmath{https://zbmath.org/?q=an:0869.35051}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1996RuMaS..51..345R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VK98200017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030506939}
Linking options:
https://www.mathnet.ru/eng/rm962
https://doi.org/10.1070/RM1996v051n02ABEH002888
https://www.mathnet.ru/eng/rm/v51/i2/p173
This publication is cited in the following 5 articles:
Russian Math. Surveys, 78:4 (2023), 635–777
Kostianko A. Zelik S., “Kwak Transform and Inertial Manifolds Revisited”, J. Dyn. Differ. Equ., 2021
Li X., Sun Ch., “Inertial Manifolds For a Singularly Non-Autonomous Semi-Linear Parabolic Equations”, Proc. Amer. Math. Soc., 149:12 (2021), 5275–5289
Kostianko A., “Bi-Lipschitz Mane Projectors and Finite-Dimensional Reduction For Complex Ginzburg-Landau Equation”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 476:2239 (2020), 20200144
Zelik S., “Inertial Manifolds and Finite-Dimensional Reduction For Dissipative PDEs”, Proc. R. Soc. Edinb. Sect. A-Math., 144:6 (2014), 1245–1327