Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2013, Volume 68, Issue 2, Pages 199–226
DOI: https://doi.org/10.1070/RM2013v068n02ABEH004828
(Mi rm9512)
 

This article is cited in 17 scientific papers (total in 17 papers)

Counterexamples to regularity of Mañé projections in the theory of attractors

A. Edena, S. V. Zelikb, V. K. Kalantarovc

a Bogazici University, Bebek, Istanbul, Turkey
b University of Surrey, Guildford, UK
c Koç University, Istanbul, Turkey
References:
Abstract: This paper is a study of global attractors of abstract semilinear parabolic equations and their embeddings in finite-dimensional manifolds. As is well known, a sufficient condition for the existence of smooth (at least C1-smooth) finite-dimensional inertial manifolds containing a global attractor is the so-called spectral gap condition for the corresponding linear operator. There are also a number of examples showing that if there is no gap in the spectrum, then a C1-smooth inertial manifold may not exist. On the other hand, since an attractor usually has finite fractal dimension, by Mañé's theorem it projects bijectively and Hölder-homeomorphically into a finite-dimensional generic plane if its dimension is large enough. It is shown here that if there are no gaps in the spectrum, then there exist attractors that cannot be embedded in any Lipschitz or even log-Lipschitz finite-dimensional manifold. Thus, if there are no gaps in the spectrum, then in the general case the inverse Mañé projection of the attractor cannot be expected to be Lipschitz or log-Lipschitz. Furthermore, examples of attractors with finite Hausdorff and infinite fractal dimension are constructed in the class of non-linearities of finite smoothness.
Bibliography: 35 titles.
Keywords: global attractors, inertial manifolds, Mañé projections, regularity.
Received: 06.02.2013
Bibliographic databases:
Document Type: Article
UDC: 517.956
MSC: Primary 35B41; Secondary 35B40, 35B42, 35B45, 35K90, 37L25
Language: English
Original paper language: Russian
Citation: A. Eden, S. V. Zelik, V. K. Kalantarov, “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226
Citation in format AMSBIB
\Bibitem{EdeZelKal13}
\by A.~Eden, S.~V.~Zelik, V.~K.~Kalantarov
\paper Counterexamples to regularity of Ma\~n\'e projections in the theory of attractors
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 2
\pages 199--226
\mathnet{http://mi.mathnet.ru/eng/rm9512}
\crossref{https://doi.org/10.1070/RM2013v068n02ABEH004828}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113977}
\zmath{https://zbmath.org/?q=an:06196293}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..199E}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320927900001}
\elib{https://elibrary.ru/item.asp?id=20423486}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880315364}
Linking options:
  • https://www.mathnet.ru/eng/rm9512
  • https://doi.org/10.1070/RM2013v068n02ABEH004828
  • https://www.mathnet.ru/eng/rm/v68/i2/p3
  • This publication is cited in the following 17 articles:
    1. Anna Kostianko, Sergey Zelik, “Smooth extensions for inertial manifolds of semilinear parabolic equations”, Analysis & PDE, 17:2 (2024), 499  crossref
    2. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Varga Kalantarov, Anna Kostianko, Sergey Zelik, “Determining functionals and finite-dimensional reduction for dissipative PDEs revisited”, Journal of Differential Equations, 345 (2023), 78  crossref
    4. Kostianko A., Li X., Sun Ch., Zelik S., “Inertial Manifolds Via Spatial Averaging Revisited”, SIAM J. Math. Anal., 54:1 (2022), 268–305  crossref  mathscinet  isi
    5. Kostianko A., Zelik S., “Kwak Transform and Inertial Manifolds Revisited”, J. Dyn. Differ. Equ., 2021  crossref  isi
    6. Kostianko A., “Bi-Lipschitz Mane Projectors and Finite-Dimensional Reduction For Complex Ginzburg-Landau Equation”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 476:2239 (2020), 20200144  crossref  mathscinet  isi
    7. Chepyzhov V.V., Kostianko A., Zelik S., “Inertial Manifolds For the Hyperbolic Relaxation of Semilinear Parabolic Equations”, Discrete Contin. Dyn. Syst.-Ser. B, 24:3, SI (2019), 1115–1142  crossref  mathscinet  isi  scopus
    8. A. Kostianko, S. Zelik, “Inertial manifolds for 1D reaction-diffusion-advection systems. Part II: periodic boundary conditions”, Commun. Pure Appl. Anal, 17:1 (2018), 285–317  crossref  mathscinet  zmath  isi  scopus
    9. A. Kostianko, “Inertial manifolds for the 3D modified-Leray-α model with periodic boundary conditions”, J. Dynam. Differential Equations, 30:1 (2018), 1–24  crossref  mathscinet  zmath  isi  scopus
    10. C. G. Gal, Ya. Guo, “Inertial manifolds for the hyperviscous Navier-Stokes equations”, J. Differ. Equ., 265:9 (2018), 4335–4374  crossref  mathscinet  zmath  isi  scopus
    11. A. Kostianko, S. Zelik, “Inertial manifolds for 1D reaction-diffusion-advection systems. Part I: Dirichlet and Neumann boundary conditions”, Commun. Pure Appl. Anal, 16:6 (2017), 2357–2376  crossref  mathscinet  zmath  isi  scopus
    12. J. C. Robinson, J. J. Sanchez-Gabites, “On finite-dimensional global attractors of homeomorphisms”, Bull. London Math. Soc., 48:3 (2016), 483–498  crossref  mathscinet  zmath  isi  scopus
    13. A. V. Romanov, “On the hyperbolicity properties of inertial manifolds of reaction-diffusion equations”, Dyn. Partial Differ. Equ., 13:3 (2016), 263–272  crossref  mathscinet  zmath  isi  elib  scopus
    14. A. Kostianko, S. Zelik, “Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions”, Commun. Pure Appl. Anal., 14:5 (2015), 2069–2094  crossref  mathscinet  zmath  isi  elib  scopus
    15. A. V. Romanov, “A Parabolic Equation with Nonlocal Diffusion without a Smooth Inertial Manifold”, Math. Notes, 96:4 (2014), 548–555  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    16. S. Zelik, “Inertial manifolds and finite-dimensional reduction for dissipative PDEs”, Proc. Roy. Soc. Edinburgh Sect. A, 144:6 (2014), 1245–1327  crossref  mathscinet  zmath  isi  elib  scopus
    17. E. Pinto de Moura, J. C. Robinson, “Log-Lipschitz continuity of the vector field on the attractor of certain parabolic equations”, Dyn. Partial Differ. Equ., 11:3 (2014), 211–228  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1014
    Russian version PDF:235
    English version PDF:33
    References:93
    First page:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025