Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2011, Volume 66, Issue 4, Pages 637–731
DOI: https://doi.org/10.1070/RM2011v066n04ABEH004753
(Mi rm9407)
 

This article is cited in 43 scientific papers (total in 43 papers)

Trajectory attractors of equations of mathematical physics

M. I. Vishik, V. V. Chepyzhov

Institute for Information Transmission Problems
References:
Abstract: In this survey the method of trajectory dynamical systems and trajectory attractors is described, and is applied in the study of the limiting asymptotic behaviour of solutions of non-linear evolution equations. This method is especially useful in the study of dissipative equations of mathematical physics for which the corresponding Cauchy initial-value problem has a global (weak) solution with respect to the time but the uniqueness of this solution either has not been established or does not hold. An important example of such an equation is the 3D Navier–Stokes system in a bounded domain. In such a situation one cannot use directly the classical scheme of construction of a dynamical system in the phase space of initial conditions of the Cauchy problem of a given equation and find a global attractor of this dynamical system. Nevertheless, for such equations it is possible to construct a trajectory dynamical system and investigate a trajectory attractor of the corresponding translation semigroup. This universal method is applied for various types of equations arising in mathematical physics: for general dissipative reaction-diffusion systems, for the 3D Navier–Stokes system, for dissipative wave equations, for non-linear elliptic equations in cylindrical domains, and for other equations and systems. Special attention is given to using the method of trajectory attractors in approximation and perturbation problems arising in complicated models of mathematical physics.
Bibliography: 96 titles.
Keywords: dynamical systems, trajectory attractors, equations of mathematical physics, ill-posed problems.
Received: 10.12.2010
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: Primary 37-02; Secondary 35-02, 35B41, 35J60, 35K57, 35Q30, 37L30
Language: English
Original paper language: Russian
Citation: M. I. Vishik, V. V. Chepyzhov, “Trajectory attractors of equations of mathematical physics”, Russian Math. Surveys, 66:4 (2011), 637–731
Citation in format AMSBIB
\Bibitem{VisChe11}
\by M.~I.~Vishik, V.~V.~Chepyzhov
\paper Trajectory attractors of equations of mathematical physics
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 4
\pages 637--731
\mathnet{http://mi.mathnet.ru/eng/rm9407}
\crossref{https://doi.org/10.1070/RM2011v066n04ABEH004753}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2883225}
\zmath{https://zbmath.org/?q=an:05988249}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66..637V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296764100001}
\elib{https://elibrary.ru/item.asp?id=20423235}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80855147681}
Linking options:
  • https://www.mathnet.ru/eng/rm9407
  • https://doi.org/10.1070/RM2011v066n04ABEH004753
  • https://www.mathnet.ru/eng/rm/v66/i4/p3
  • This publication is cited in the following 43 articles:
    1. Caidi Zhao, “Absorbing estimate implies trajectory statistical solutions for nonlinear elliptic equations in half-cylindrical domains”, Math. Ann., 2024  crossref
    2. V. V. Chepyzhov, “Metod traektornykh attraktorov dlya dissipativnykh uravnenii v chastnykh proizvodnykh s malym parametrom”, Izvestiya vuzov. PND, 32:6 (2024), 858–877  mathnet  crossref
    3. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. Andrew Comech, Alexander Komech, Mikhail Vishik, Trends in Mathematics, Partial Differential Equations and Functional Analysis, 2023, 259  crossref
    5. 瑞 郭, “The Time-Dependent Global Attractors for an Extensible Beam Equation with StructuralDamping”, AAM, 12:05 (2023), 2340  crossref
    6. P. Feketa, O.V. Kapustyan, O.A. Kapustian, I.I. Korol, “Global attractors of mild solutions semiflow for semilinear parabolic equation without uniqueness”, Applied Mathematics Letters, 135 (2023), 108435  crossref
    7. K. A. Bekmaganbetov, V. V. Chepyzhov, G. A. Chechkin, “Strong convergence of attractors of reaction-diffusion system with rapidly oscillating terms in an orthotropic porous medium”, Izv. Math., 86:6 (2022), 1072–1101  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. Dmitrenko A.V., “Determination of Critical Reynolds Number For the Flow Near a Rotating Disk on the Basis of the Theory of Stochastic Equations and Equivalence of Measures”, Fluids, 6:1 (2021), 5  crossref  isi
    9. V. G. Zvyagin, M. V. Kaznacheev, “Attraktory dlya avtonomnoi modeli dvizheniya nelineino-vyazkoi zhidkosti”, Materialy Voronezhskoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 191, VINITI RAN, M., 2021, 74–91  mathnet  crossref
    10. K. A. Bekmaganbetov, V. V. Chepyzhov, G. A. Chechkin, “Homogenization of Attractors of Reaction–Diffusion System with Rapidly Oscillating Terms in an Orthotropic Porous Medium”, J Math Sci, 259:2 (2021), 148  crossref
    11. Dmitrenko A.V., “the Correlation Dimension of An Attractor Determined on the Base of the Theory of Equivalence of Measures and Stochastic Equations For Continuum”, Continuum Mech. Thermodyn., 32:1 (2020), 63–74  crossref  mathscinet  isi
    12. Bekmaganbetov K.A. Chechkin G.A. Chepyzhov V.V., “Strong Convergence of Trajectory Attractors For Reaction-Diffusion Systems With Random Rapidly Oscillating Terms”, Commun. Pure Appl. Anal, 19:5 (2020), 2419–2443  crossref  mathscinet  isi
    13. Zhao C., Li Ya., Caraballo T., “Trajectory Statistical Solutions and Liouville Type Equations For Evolution Equations: Abstract Results and Applications”, J. Differ. Equ., 269:1 (2020), 467–494  crossref  mathscinet  isi
    14. Bekmaganbetov K.A. Chechkin G.A. Chepyzhov V.V., ““Strange Term” in Homogenization of Attractors of Reaction-Diffusion Equation in Perforated Domain”, Chaos Solitons Fractals, 140 (2020), 110208  crossref  mathscinet  isi
    15. A V Dmitrenko, “The Spectrum of the turbulence based on theory of stochastic equations and equivalenceof measures”, J. Phys.: Conf. Ser., 1705:1 (2020), 012021  crossref
    16. A V Dmitrenko, “Determination of critical Reynolds number in the jet based on the theory of stochastic equations and equivalence of measures”, J. Phys.: Conf. Ser., 1705:1 (2020), 012015  crossref
    17. Bekmaganbetov K.A. Chechkin G.A. Chepyzhov V.V., “Weak Convergence of Attractors of Reaction-Diffusion Systems With Randomly Oscillating Coefficients”, Appl. Anal., 98:1-2, SI (2019), 256–271  crossref  mathscinet  isi  scopus
    18. Zhao C., Caraballo T., “Asymptotic Regularity of Trajectory Attractor and Trajectory Statistical Solution For the 3D Globally Modified Navier-Stokes Equations”, J. Differ. Equ., 266:11 (2019), 7205–7229  crossref  mathscinet  zmath  isi  scopus
    19. A V Dmitrenko, “The construction of the portrait of the correlation dimension of an attractor in the boundary layer of Earth's atmosphere”, J. Phys.: Conf. Ser., 1301:1 (2019), 012006  crossref
    20. A V Dmitrenko, “Determination of the correlation dimension of an attractor in a pipe based on the theory of stochastic equations and equivalence of measures”, J. Phys.: Conf. Ser., 1250:1 (2019), 012001  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:2066
    Russian version PDF:683
    English version PDF:76
    References:178
    First page:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025