Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1998, Volume 53, Issue 4, Pages 731–776
DOI: https://doi.org/10.1070/rm1998v053n04ABEH000057
(Mi rm57)
 

This article is cited in 47 scientific papers (total in 47 papers)

Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems

I. D. Chueshov

V. N. Karazin Kharkiv National University
References:
Received: 15.09.1997
Bibliographic databases:
Document Type: Article
UDC: 517.94
Language: English
Original paper language: Russian
Citation: I. D. Chueshov, “Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems”, Russian Math. Surveys, 53:4 (1998), 731–776
Citation in format AMSBIB
\Bibitem{Chu98}
\by I.~D.~Chueshov
\paper Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems
\jour Russian Math. Surveys
\yr 1998
\vol 53
\issue 4
\pages 731--776
\mathnet{http://mi.mathnet.ru/eng/rm57}
\crossref{https://doi.org/10.1070/rm1998v053n04ABEH000057}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1668050}
\zmath{https://zbmath.org/?q=an:0948.34035}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1998RuMaS..53..731C}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078716700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0039530497}
Linking options:
  • https://www.mathnet.ru/eng/rm57
  • https://doi.org/10.1070/rm1998v053n04ABEH000057
  • https://www.mathnet.ru/eng/rm/v53/i4/p77
  • This publication is cited in the following 47 articles:
    1. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. M. M. Freitas, C. A. Raposo, A. J. A. Ramos, J. Ferreira, L. G. R. Miranda, “Asymptotic limits and attractors for a laminated beam model”, Z. Angew. Math. Phys., 74:4 (2023)  crossref
    3. Fogato M., “Asymptotic Finite-Dimensional Approximations For a Class of Extensible Elastic Systems”, Math. Eng., 4:4 (2021)  crossref  isi
    4. Igor Chueshov, Tamara Fastovska, Iryna Ryzhkova, “Quasi-stability method in study of asymptotic behavior of dynamical systems”, Zhurn. matem. fiz., anal., geom., 15:4 (2019), 448–501  mathnet  crossref  elib
    5. Cui H., Freitas M.M., Langa J.A., “Squeezing and Finite Dimensionality of Cocycle Attractors For 2D Stochastic Navier–Stokes Equation With Non-Autonomous Forcing”, Discrete Contin. Dyn. Syst.-Ser. B, 23:3 (2018), 1297–1324  crossref  mathscinet  isi  scopus  scopus
    6. Kalantarov V.K., Titi E.S., “Global Stabilization of the Navier–Stokes-Voight and the Damped Nonlinear Wave Equations By Finite Number of Feedback Controllers”, Discrete Contin. Dyn. Syst.-Ser. B, 23:3 (2018), 1325–1345  crossref  mathscinet  isi  scopus  scopus
    7. Bilgin B.A., Kalantarov V.K., “Existence of An Attractor and Determining Modes For Structurally Damped Nonlinear Wave Equations”, Physica D, 376:SI (2018), 15–22  crossref  mathscinet  isi  scopus
    8. Bilgin B., Kalantarov V., “Determining Functionals For Damped Nonlinear Wave Equations”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 931–944  crossref  mathscinet  zmath  isi  scopus
    9. Soltanov K.N., Prykarpatski A.K., Blackmore D., “Long-Time Behavior of Solutions and Chaos in Reaction-Diffusion Equations”, Chaos Solitons Fractals, 99 (2017), 91–100  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 219  crossref
    11. Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 1  crossref
    12. Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 91  crossref
    13. Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 145  crossref
    14. Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 285  crossref
    15. Ülkü Dinlemez, “Global Existence, Uniqueness of Weak Solutions and Determining Functionals for Nonlinear Wave Equations”, APM, 03:05 (2013), 451  crossref
    16. Chueshov I., Kolbasin S., “Long-Time Dynamics in Plate Models With Strong Nonlinear Damping”, Commun Pure Appl Anal, 11:2 (2012), 659–674  crossref  mathscinet  zmath  isi  scopus  scopus
    17. Ciprian Foias, Michael S. Jolly, Rostyslav Kravchenko, Edriss S. Titi, “A determining form for the two-dimensional Navier–Stokes equations: The Fourier modes case”, J. Math. Phys, 53:11 (2012), 115623  crossref  mathscinet  zmath  isi  scopus  scopus
    18. I. V. Ermakov, V. Reitmann, “Determining functionals for the microwave heating system”, Vestnik St.Petersb. Univ.Math, 45:4 (2012), 153  crossref  mathscinet  mathscinet  zmath  elib  elib  scopus
    19. Igor Chueshov, “Long-time dynamics of Kirchhoff wave models with strong nonlinear damping”, Journal of Differential Equations, 2011  crossref  mathscinet  isi  scopus  scopus
    20. Ermakov I.V., Kalinin Yu.N., Reitmann V., “Determining modes and almost periodic integrals for cocycles”, Differ Equ, 47:13 (2011), 1837–1852  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:781
    Russian version PDF:325
    English version PDF:39
    References:92
    First page:1
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025