Citation:
I. D. Chueshov, “Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems”, Russian Math. Surveys, 53:4 (1998), 731–776
\Bibitem{Chu98}
\by I.~D.~Chueshov
\paper Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems
\jour Russian Math. Surveys
\yr 1998
\vol 53
\issue 4
\pages 731--776
\mathnet{http://mi.mathnet.ru/eng/rm57}
\crossref{https://doi.org/10.1070/rm1998v053n04ABEH000057}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1668050}
\zmath{https://zbmath.org/?q=an:0948.34035}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1998RuMaS..53..731C}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078716700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0039530497}
Linking options:
https://www.mathnet.ru/eng/rm57
https://doi.org/10.1070/rm1998v053n04ABEH000057
https://www.mathnet.ru/eng/rm/v53/i4/p77
This publication is cited in the following 47 articles:
Russian Math. Surveys, 78:4 (2023), 635–777
M. M. Freitas, C. A. Raposo, A. J. A. Ramos, J. Ferreira, L. G. R. Miranda, “Asymptotic limits and attractors for a laminated beam model”, Z. Angew. Math. Phys., 74:4 (2023)
Fogato M., “Asymptotic Finite-Dimensional Approximations For a Class of Extensible Elastic Systems”, Math. Eng., 4:4 (2021)
Igor Chueshov, Tamara Fastovska, Iryna Ryzhkova, “Quasi-stability method in study of asymptotic behavior of dynamical systems”, Zhurn. matem. fiz., anal., geom., 15:4 (2019), 448–501
Cui H., Freitas M.M., Langa J.A., “Squeezing and Finite Dimensionality of Cocycle Attractors For 2D Stochastic Navier–Stokes Equation With Non-Autonomous Forcing”, Discrete Contin. Dyn. Syst.-Ser. B, 23:3 (2018), 1297–1324
Kalantarov V.K., Titi E.S., “Global Stabilization of the Navier–Stokes-Voight and the Damped Nonlinear Wave Equations By Finite Number of Feedback Controllers”, Discrete Contin. Dyn. Syst.-Ser. B, 23:3 (2018), 1325–1345
Bilgin B.A., Kalantarov V.K., “Existence of An Attractor and Determining Modes For Structurally Damped Nonlinear Wave Equations”, Physica D, 376:SI (2018), 15–22
Bilgin B., Kalantarov V., “Determining Functionals For Damped Nonlinear Wave Equations”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 931–944
Soltanov K.N., Prykarpatski A.K., Blackmore D., “Long-Time Behavior of Solutions and Chaos in Reaction-Diffusion Equations”, Chaos Solitons Fractals, 99 (2017), 91–100
Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 219
Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 1
Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 91
Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 145
Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 285
Ülkü Dinlemez, “Global Existence, Uniqueness of Weak Solutions and Determining Functionals for Nonlinear Wave Equations”, APM, 03:05 (2013), 451
Chueshov I., Kolbasin S., “Long-Time Dynamics in Plate Models With Strong Nonlinear Damping”, Commun Pure Appl Anal, 11:2 (2012), 659–674
Ciprian Foias, Michael S. Jolly, Rostyslav Kravchenko, Edriss S. Titi, “A determining form for the two-dimensional Navier–Stokes equations: The Fourier modes case”, J. Math. Phys, 53:11 (2012), 115623
I. V. Ermakov, V. Reitmann, “Determining functionals for the microwave heating system”, Vestnik St.Petersb. Univ.Math, 45:4 (2012), 153
Igor Chueshov, “Long-time dynamics of Kirchhoff wave models with strong nonlinear damping”, Journal of Differential Equations, 2011
Ermakov I.V., Kalinin Yu.N., Reitmann V., “Determining modes and almost periodic integrals for cocycles”, Differ Equ, 47:13 (2011), 1837–1852