Processing math: 100%
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2002, Volume 57, Issue 4, Pages 753–784
DOI: https://doi.org/10.1070/RM2002v057n04ABEH000550
(Mi rm550)
 

This article is cited in 22 scientific papers (total in 22 papers)

Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains

A. Mielkea, S. V. Zelikb

a University of Stuttgart, Mathematical Institute A
b Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: This paper is a study of an abstract model of a second-order non-linear elliptic boundary-value problem in a cylindrical domain by the methods of the theory of dynamical systems. It is shown that, under some natural conditions, the essential solutions of the problem in question are described by means of the global attractor of the corresponding trajectory dynamical system, and this attractor can have infinite fractal dimension and infinite topological entropy. Moreover, sharp upper and lower bounds are obtained for the Kolmogorov ε-entropy of these attractors.
Received: 05.04.2002
Bibliographic databases:
Document Type: Article
MSC: Primary 35J25, 35J65; Secondary 35B41, 37A35, 37B40, 37C45, 35K57
Language: English
Original paper language: Russian
Citation: A. Mielke, S. V. Zelik, “Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains”, Russian Math. Surveys, 57:4 (2002), 753–784
Citation in format AMSBIB
\Bibitem{MieZel02}
\by A.~Mielke, S.~V.~Zelik
\paper Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains
\jour Russian Math. Surveys
\yr 2002
\vol 57
\issue 4
\pages 753--784
\mathnet{http://mi.mathnet.ru/eng/rm550}
\crossref{https://doi.org/10.1070/RM2002v057n04ABEH000550}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1942119}
\zmath{https://zbmath.org/?q=an:1049.37048}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2002RuMaS..57..753M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179830900005}
\elib{https://elibrary.ru/item.asp?id=13403649}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036664311}
Linking options:
  • https://www.mathnet.ru/eng/rm550
  • https://doi.org/10.1070/RM2002v057n04ABEH000550
  • https://www.mathnet.ru/eng/rm/v57/i4/p119
  • This publication is cited in the following 22 articles:
    1. Caidi Zhao, “Absorbing estimate implies trajectory statistical solutions for nonlinear elliptic equations in half-cylindrical domains”, Math. Ann., 2024  crossref
    2. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Björn Sandstede, Arnd Scheel, “Spiral Waves: Linear and Nonlinear Theory”, Memoirs of the AMS, 285:1413 (2023)  crossref
    4. Qin Yu., Wang X., “Upper Semicontinuity of Trajectory Attractors For 3D Incompressible Navier-Stokes Equation”, Appl. Math. Optim., 84:1 (2021), 1–18  crossref  mathscinet  isi
    5. Lerman L.M., Naryshkin P.E., Nazarov I A., “Abundance of Entire Solutions to Nonlinear Elliptic Equations By the Variational Method”, Nonlinear Anal.-Theory Methods Appl., 190 (2020), UNSP 111590  crossref  mathscinet  isi  scopus
    6. Wang F., Cheng H., Si J., “Response Solution to Ill-Posed Boussinesq Equation With Quasi-Periodic Forcing of Liouvillean Frequency”, J. Nonlinear Sci., 30:2 (2020), 657–710  crossref  mathscinet  isi  scopus
    7. Laptev A., Sasane S.M., “Perturbations of embedded eigenvalues for a magnetic Schrödinger operator on a cylinder”, J. Math. Phys., 58:1 (2017), 012105  crossref  mathscinet  zmath  isi  scopus
    8. Mark Vishik, Sergey Zelik, “Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit”, CPAA, 13:5 (2014), 2059  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Zelik S., “Inertial Manifolds and Finite-Dimensional Reduction For Dissipative PDEs”, Proc. R. Soc. Edinb. Sect. A-Math., 144:6 (2014), 1245–1327  crossref  mathscinet  zmath  isi  scopus  scopus
    10. A. Eden, S. V. Zelik, V. K. Kalantarov, “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Mikhail Z. Zgurovsky, Pavlo O. Kasyanov, Oleksiy V. Kapustyan, José Valero, Nina V. Zadoianchuk, Advances in Mechanics and Mathematics, 27, Evolution Inclusions and Variation Inequalities for Earth Data Processing III, 2012, 3  crossref
    12. M. I. Vishik, V. V. Chepyzhov, “Trajectory attractors of equations of mathematical physics”, Russian Math. Surveys, 66:4 (2011), 637–731  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    13. Oh, M, “Evans functions for periodic waves on infinite cylindrical domains”, Journal of Differential Equations, 248:3 (2010), 544  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. Kapustyan O.V., Valero J., “Comparison Between Trajectory and Global Attractors for Evolution Systems Without Uniqueness of Solutions”, International Journal of Bifurcation and Chaos, 20:9 (2010), 2723–2734  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    15. de la Llave R., “A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities”, J. Dynam. Differential Equations, 21:3 (2009), 371–415  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    16. Derks, G, “Perturbations of embedded eigenvalues for the bilaplacian on a cylinder”, Discrete and Continuous Dynamical Systems, 21:3 (2008), 801  crossref  mathscinet  zmath  isi  elib  scopus
    17. A. Miranville, S. Zelik, Handbook of Differential Equations: Evolutionary Equations, 4, 2008, 103  crossref
    18. Efendiev M., “On an elliptic attractor in an asymptotically symmetric unbounded domain in R4+”, Bull. Lond. Math. Soc., 39 (2007), 911–920  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    19. Mielke A., Zelik S.V., “Infinite-dimensional hyperbolic sets and spatio-temporal chaos in reaction diffusion systems in Rn”, J. Dynam. Differential Equations, 19:2 (2007), 333–389  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    20. A.V. Babin, Handbook of Dynamical Systems, 1, 2006, 983  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:569
    Russian version PDF:259
    English version PDF:24
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025