Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2000, Volume 55, Issue 5, Pages 923–975
DOI: https://doi.org/10.1070/rm2000v055n05ABEH000321
(Mi rm321)
 

This article is cited in 441 scientific papers (total in 441 papers)

Determinantal random point fields

Alexander Soshnikovab

a Caltech, Department of Mathematics
b University of California, Davis
References:
Abstract: This paper contains an exposition of both recent and rather old results on determinantal random point fields. We begin with some general theorems including proofs of necessary and sufficient conditions for the existence of a determinantal random point field with Hermitian kernel and of a criterion for weak convergence of its distribution. In the second section we proceed with examples of determinantal random fields in quantum mechanics, statistical mechanics, random matrix theory, probability theory, representation theory, and ergodic theory. In connection with the theory of renewal processes, we characterize all Hermitian determinantal random point fields on R1 and Z1 with independent identically distributed spacings. In the third section we study translation-invariant determinantal random point fields and prove the mixing property for arbitrary multiplicity and the absolute continuity of the spectra. In the last section we discuss proofs of the central limit theorem for the number of particles in a growing box and of the functional central limit theorem for the empirical distribution function of spacings.
Received: 11.04.2000
Bibliographic databases:
Document Type: Article
UDC: 519.218
MSC: Primary 60G60, 60K35; Secondary 15A52, 60K05, 60F05, 37A25, 82C22
Language: English
Original paper language: Russian
Citation: Alexander Soshnikov, “Determinantal random point fields”, Russian Math. Surveys, 55:5 (2000), 923–975
Citation in format AMSBIB
\Bibitem{Sos00}
\by Alexander~Soshnikov
\paper Determinantal random point fields
\jour Russian Math. Surveys
\yr 2000
\vol 55
\issue 5
\pages 923--975
\mathnet{http://mi.mathnet.ru/eng/rm321}
\crossref{https://doi.org/10.1070/rm2000v055n05ABEH000321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1799012}
\zmath{https://zbmath.org/?q=an:0991.60038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2000RuMaS..55..923S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000168165100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034556390}
Linking options:
  • https://www.mathnet.ru/eng/rm321
  • https://doi.org/10.1070/rm2000v055n05ABEH000321
  • https://www.mathnet.ru/eng/rm/v55/i5/p107
  • This publication is cited in the following 441 articles:
    1. Peter J. Forrester, Nicholas S. Witte, “Power spectra of Dyson's circular ensembles”, Physica D: Nonlinear Phenomena, 471 (2025), 134435  crossref
    2. Giulio Ruzza, “Bessel Kernel Determinants and Integrable Equations”, Ann. Henri Poincaré, 2025  crossref
    3. Yun Li, Benedek Valkó, “Edge limits of truncated circular beta ensembles”, Electron. J. Probab., 30:none (2025)  crossref
    4. Vadim Gorin, Matthew Nicoletti, “Six-vertex model and random matrix distributions”, Bull. Amer. Math. Soc., 62:2 (2025), 175  crossref
    5. Antti Haimi, José Luis Romero, “Normality of smooth statistics for planar determinantal point processes”, Bernoulli, 30:1 (2024)  crossref
    6. Tom Claeys, Sofia Tarricone, “On the Integrable Structure of Deformed Sine Kernel Determinants”, Math Phys Anal Geom, 27:1 (2024)  crossref
    7. Tom Claeys, Gabriel Glesner, Giulio Ruzza, Sofia Tarricone, “Jánossy Densities and Darboux Transformations for the Stark and Cylindrical KdV Equations”, Commun. Math. Phys., 405:5 (2024)  crossref
    8. Ryosuke Sato, “GICAR Algebras and Dynamics on Determinantal Point Processes: Discrete Orthogonal Polynomial Ensemble Case”, Commun. Math. Phys., 405:5 (2024)  crossref
    9. Rémi Bardenet, Michaël Fanuel, Alexandre Feller, “On sampling determinantal and Pfaffian point processes on a quantum computer”, J. Phys. A: Math. Theor., 57:5 (2024), 055202  crossref
    10. Yasuaki Hiraoka, Tomoyuki Shirai, “Torsion-weighted spanning acycle entropy in cubical lattices and Mahler measures”, J Appl. and Comput. Topology, 2024  crossref
    11. Haina Wang, Salvatore Torquato, “Designer pair statistics of disordered many-particle systems with novel properties”, The Journal of Chemical Physics, 160:4 (2024)  crossref
    12. J. Arias de Reyna, B. Rodgers, “On convergence of points to limiting processes, with an application to zeta zeros”, Expositiones Mathematicae, 2024, 125588  crossref
    13. Zhengjiang Lin, “Nonlocal energy functionals and determinantal point processes on non-smooth domains”, Math. Z., 307:3 (2024)  crossref
    14. Svetlana Gavrilova, Leonid Petrov, “Tilted biorthogonal ensembles, Grothendieck random partitions, and determinantal tests”, Sel. Math. New Ser., 30:3 (2024)  crossref
    15. Yves Le Jan, Probability Theory and Stochastic Modelling, 106, Random Walks and Physical Fields, 2024, 99  crossref
    16. Brad Rodgers, “Arithmetic Consequences of the GUE Conjecture for Zeta Zeros”, Michigan Math. J., -1:-1 (2024)  crossref
    17. M Bertola, T Grava, G Orsatti, “Integrable operators,
      ∂ ―
      -problems, KP and NLS hierarchy”, Nonlinearity, 37:8 (2024), 085008  crossref
    18. Takashi Imamura, Matteo Mucciconi, Tomohiro Sasamoto, “Identity between Restricted Cauchy Sums for the q-Whittaker and Skew Schur Polynomials”, SIGMA, 20 (2024), 064, 28 pp.  mathnet  crossref
    19. Dan Dai, Luming Yao, Yu Zhai, “Asymptotics of the confluent hypergeometric process with a varying external potential in the super-exponential region”, Anal. Appl., 22:08 (2024), 1353  crossref
    20. Hirofumi Osada, Hideki Tanemura, “Infinite-dimensional stochastic differential equations arising from Airy random point fields”, Stoch PDE: Anal Comp, 2024  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:2307
    Russian version PDF:632
    English version PDF:98
    References:115
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025