Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2010, Volume 6, Number 3, Pages 489–512 (Mi nd20)  

This article is cited in 6 scientific papers (total in 6 papers)

The Vlasov kinetic equation, dynamics of continuum and turbulence

V. V. Kozlov

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (276 kB) Citations (6)
References:
Abstract: We consider a continuum of interacting particles whose evolution is governed by the Vlasov kinetic equation. An infinite sequence of equations of motion for this medium (in the Eulerian description) is derived and its general properties are explored. An important example is a collisionless gas, which exhibits irreversible behavior. Though individual particles interact via a potential, the dynamics of the continuum bears dissipative features. Applicability of the Vlasov equations to the modeling of small-scale turbulence is discussed.
Keywords: kinetic Vlasov's equation, Euler's equation, continuum, turbulence.
Received: 20.07.2010
Bibliographic databases:
Document Type: Article
UDC: 517
MSC: 37A60, 82B30, 82C05
Language: Russian
Citation: V. V. Kozlov, “The Vlasov kinetic equation, dynamics of continuum and turbulence”, Nelin. Dinam., 6:3 (2010), 489–512
Citation in format AMSBIB
\Bibitem{Koz10}
\by V.~V.~Kozlov
\paper The Vlasov kinetic equation, dynamics of continuum and turbulence
\jour Nelin. Dinam.
\yr 2010
\vol 6
\issue 3
\pages 489--512
\mathnet{http://mi.mathnet.ru/nd20}
\elib{https://elibrary.ru/item.asp?id=15223023}
Linking options:
  • https://www.mathnet.ru/eng/nd20
  • https://www.mathnet.ru/eng/nd/v6/i3/p489
  • This publication is cited in the following 6 articles:
    1. V. I. Bogachev, S. V. Shaposhnikov, “Nonlinear Fokker–Planck–Kolmogorov equations”, Russian Math. Surveys, 79:5 (2024), 751–805  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. V. V. Vedenyapin, “Uravnenie Vlasova–Maksvella–Einshteina”, Preprinty IPM im. M. V. Keldysha, 2018, 188, 20 pp.  mathnet  crossref  elib
    3. V. V. Vedenyapin, M. A. Negmatov, N. N. Fimin, “Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences”, Izv. Math., 81:3 (2017), 505–541  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Manita O.A., Romanov M.S., Shaposhnikov S.V., “on Uniqueness of Solutions To Nonlinear Fokker-Planek-Kolmogorov Equations”, Nonlinear Anal.-Theory Methods Appl., 128 (2015), 199–226  crossref  mathscinet  zmath  isi  scopus
    5. Manita O.A., Romanov M.S., Shaposhnikov S.V., “Uniqueness of Probability Solutions To Nonlinear Fokker-Planck-Kolmogorov Equation”, Dokl. Math., 91:2 (2015), 142–146  crossref  mathscinet  zmath  isi  elib  scopus
    6. O. A. Manita, S. V. Shaposhnikov, “Nonlinear parabolic equations for measures”, St. Petersburg Math. J., 25:1 (2014), 43–62  mathnet  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:769
    Full-text PDF :307
    References:93
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025