Citation:
A. V. Romanov, “Three counterexamples in the theory of inertial manifolds”, Mat. Zametki, 68:3 (2000), 439–447; Math. Notes, 68:3 (2000), 378–385
\Bibitem{Rom00}
\by A.~V.~Romanov
\paper Three counterexamples in the theory of inertial manifolds
\jour Mat. Zametki
\yr 2000
\vol 68
\issue 3
\pages 439--447
\mathnet{http://mi.mathnet.ru/mzm961}
\crossref{https://doi.org/10.4213/mzm961}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1819147}
\zmath{https://zbmath.org/?q=an:0984.35034}
\elib{https://elibrary.ru/item.asp?id=13344701}
\transl
\jour Math. Notes
\yr 2000
\vol 68
\issue 3
\pages 378--385
\crossref{https://doi.org/10.1007/BF02674562}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165571900013}
Linking options:
https://www.mathnet.ru/eng/mzm961
https://doi.org/10.4213/mzm961
https://www.mathnet.ru/eng/mzm/v68/i3/p439
This publication is cited in the following 16 articles:
Anna Kostianko, Sergey Zelik, “Smooth extensions for inertial manifolds of semilinear parabolic equations”, Analysis & PDE, 17:2 (2024), 499
Maximilian Engel, Felix Hummel, Christian Kuehn, Nikola Popović, Mariya Ptashnyk, Thomas Zacharis, “Geometric analysis of fast-slow PDEs with fold singularities via Galerkin discretisation”, Nonlinearity, 37:11 (2024), 115017
Russian Math. Surveys, 78:4 (2023), 635–777
Varga Kalantarov, Anna Kostianko, Sergey Zelik, “Determining functionals and finite-dimensional reduction for dissipative PDEs revisited”, Journal of Differential Equations, 345 (2023), 78
Kostianko A., Li X., Sun Ch., Zelik S., “Inertial Manifolds Via Spatial Averaging Revisited”, SIAM J. Math. Anal., 54:1 (2022), 268–305
Kostianko A., Zelik S., “Kwak Transform and Inertial Manifolds Revisited”, J. Dyn. Differ. Equ., 2021
Kwak M., Sun X., “Remarks on the Existence of An Inertial Manifold”, J. Korean. Math. Soc., 58:5 (2021), 1261–1277
Kostianko A., “Bi-Lipschitz Mane Projectors and Finite-Dimensional Reduction For Complex Ginzburg-Landau Equation”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 476:2239 (2020), 20200144
Chepyzhov V.V., Kostianko A., Zelik S., “Inertial Manifolds For the Hyperbolic Relaxation of Semilinear Parabolic Equations”, Discrete Contin. Dyn. Syst.-Ser. B, 24:3, SI (2019), 1115–1142
Kostianko A. Zelik S., “Nertial Manifolds For 1D Reaction-Diffusion-Advection Systems. Part II: Periodic Boundary Conditions”, Commun. Pure Appl. Anal, 17:1 (2018), 285–317
Gal C.G., Guo Ya., “Inertial Manifolds For the Hyperviscous Navier-Stokes Equations”, J. Differ. Equ., 265:9 (2018), 4335–4374
Romanov A.V., “On the hyperbolicity properties of inertial manifolds of reaction–diffusion equations”, Dyn. Partial Differ. Equ., 13:3 (2016), 263–272
A. V. Romanov, “A Parabolic Equation with Nonlocal Diffusion without a Smooth Inertial Manifold”, Math. Notes, 96:4 (2014), 548–555
Zelik S., “Inertial Manifolds and Finite-Dimensional Reduction For Dissipative PDEs”, Proc. R. Soc. Edinb. Sect. A-Math., 144:6 (2014), 1245–1327
A. Eden, S. V. Zelik, V. K. Kalantarov, “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226
A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. Math., 65:5 (2001), 977–1001