Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2000, Volume 68, Issue 3, Pages 439–447
DOI: https://doi.org/10.4213/mzm961
(Mi mzm961)
 

This article is cited in 16 scientific papers (total in 16 papers)

Three counterexamples in the theory of inertial manifolds

A. V. Romanov

All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences
References:
Received: 11.02.1999
English version:
Mathematical Notes, 2000, Volume 68, Issue 3, Pages 378–385
DOI: https://doi.org/10.1007/BF02674562
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: A. V. Romanov, “Three counterexamples in the theory of inertial manifolds”, Mat. Zametki, 68:3 (2000), 439–447; Math. Notes, 68:3 (2000), 378–385
Citation in format AMSBIB
\Bibitem{Rom00}
\by A.~V.~Romanov
\paper Three counterexamples in the theory of inertial manifolds
\jour Mat. Zametki
\yr 2000
\vol 68
\issue 3
\pages 439--447
\mathnet{http://mi.mathnet.ru/mzm961}
\crossref{https://doi.org/10.4213/mzm961}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1819147}
\zmath{https://zbmath.org/?q=an:0984.35034}
\elib{https://elibrary.ru/item.asp?id=13344701}
\transl
\jour Math. Notes
\yr 2000
\vol 68
\issue 3
\pages 378--385
\crossref{https://doi.org/10.1007/BF02674562}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165571900013}
Linking options:
  • https://www.mathnet.ru/eng/mzm961
  • https://doi.org/10.4213/mzm961
  • https://www.mathnet.ru/eng/mzm/v68/i3/p439
  • This publication is cited in the following 16 articles:
    1. Anna Kostianko, Sergey Zelik, “Smooth extensions for inertial manifolds of semilinear parabolic equations”, Analysis & PDE, 17:2 (2024), 499  crossref
    2. Maximilian Engel, Felix Hummel, Christian Kuehn, Nikola Popović, Mariya Ptashnyk, Thomas Zacharis, “Geometric analysis of fast-slow PDEs with fold singularities via Galerkin discretisation”, Nonlinearity, 37:11 (2024), 115017  crossref
    3. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. Varga Kalantarov, Anna Kostianko, Sergey Zelik, “Determining functionals and finite-dimensional reduction for dissipative PDEs revisited”, Journal of Differential Equations, 345 (2023), 78  crossref
    5. Kostianko A., Li X., Sun Ch., Zelik S., “Inertial Manifolds Via Spatial Averaging Revisited”, SIAM J. Math. Anal., 54:1 (2022), 268–305  crossref  isi
    6. Kostianko A., Zelik S., “Kwak Transform and Inertial Manifolds Revisited”, J. Dyn. Differ. Equ., 2021  crossref  mathscinet  isi
    7. Kwak M., Sun X., “Remarks on the Existence of An Inertial Manifold”, J. Korean. Math. Soc., 58:5 (2021), 1261–1277  crossref  isi
    8. Kostianko A., “Bi-Lipschitz Mane Projectors and Finite-Dimensional Reduction For Complex Ginzburg-Landau Equation”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 476:2239 (2020), 20200144  crossref  mathscinet  isi
    9. Chepyzhov V.V., Kostianko A., Zelik S., “Inertial Manifolds For the Hyperbolic Relaxation of Semilinear Parabolic Equations”, Discrete Contin. Dyn. Syst.-Ser. B, 24:3, SI (2019), 1115–1142  crossref  isi  scopus
    10. Kostianko A. Zelik S., “Nertial Manifolds For 1D Reaction-Diffusion-Advection Systems. Part II: Periodic Boundary Conditions”, Commun. Pure Appl. Anal, 17:1 (2018), 285–317  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Gal C.G., Guo Ya., “Inertial Manifolds For the Hyperviscous Navier-Stokes Equations”, J. Differ. Equ., 265:9 (2018), 4335–4374  crossref  mathscinet  zmath  isi  scopus
    12. Romanov A.V., “On the hyperbolicity properties of inertial manifolds of reaction–diffusion equations”, Dyn. Partial Differ. Equ., 13:3 (2016), 263–272  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    13. A. V. Romanov, “A Parabolic Equation with Nonlocal Diffusion without a Smooth Inertial Manifold”, Math. Notes, 96:4 (2014), 548–555  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    14. Zelik S., “Inertial Manifolds and Finite-Dimensional Reduction For Dissipative PDEs”, Proc. R. Soc. Edinb. Sect. A-Math., 144:6 (2014), 1245–1327  crossref  mathscinet  zmath  isi  scopus  scopus
    15. A. Eden, S. V. Zelik, V. K. Kalantarov, “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    16. A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. Math., 65:5 (2001), 977–1001  mathnet  crossref  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:434
    Full-text PDF :208
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025