Abstract:
It is shown that the precise result of G. Szegö on the asymptotic behavior of the Toeplitz determinants Dn(f), generated by the nonnegative summable function of f(λ) holds if lnf∈L1(−π,π).
This publication is cited in the following 10 articles:
Alexander Bufetov, “The expectation of a multiplicative functional under the sine-process”, Funct. Anal. Appl., 58:2 (2024), 120–128
A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583
Filiberto Ares, M. A. Rajabpour, Jacopo Viti, “Exact full counting statistics for the staggered magnetization and the domain walls in the
XY
spin chain”, Phys. Rev. E, 103:4 (2021)
Filiberto Ares, José G Esteve, Fernando Falceto, Zoltán Zimborás, “Sublogarithmic behaviour of the entanglement entropy in fermionic chains”, J. Stat. Mech., 2019:9 (2019), 093105
Vincent Beaud, Julian Sieber, Simone Warzel, “Bounds on the bipartite entanglement entropy for oscillator systems with or without disorder”, J. Phys. A: Math. Theor., 52:23 (2019), 235202
J. Math. Sci. (N. Y.), 219:5 (2016), 714–730
V. S. Vladimirov, I. V. Volovich, “A statistical physics model”, Theoret. and Math. Phys., 54:1 (1983), 1–12
I. Yu. Linnik, “A multidimensional analog of a limit theorem of G. Szegö”, Math. USSR-Izv., 9:6 (1975), 1323–1332
Ya. L. Geronimus, “G. Szegö's limit relation and properties of the corresponding orthogonal polynomials”, Math. USSR-Izv., 7:5 (1973), 1185–1198
B. L. Golinskii, I. A. Ibragimov, “On Szegö's limit theorem”, Math. USSR-Izv., 5:2 (1971), 421–444