Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 104, Issue 1, Pages 3–10
DOI: https://doi.org/10.4213/mzm11666
(Mi mzm11666)
 

This article is cited in 3 scientific papers (total in 3 papers)

Approximation by Sums of the Form kλkh(λkz) in the Disk

P. A. Borodin

Lomonosov Moscow State University
Full-text PDF (460 kB) Citations (3)
References:
Abstract: Given a function h analytic in the unit disk D, we study the density in the space A(D) of functions analytic inside D of the set S(h,E) of sums of the form kλkh(λkz) with parameters λkE, where E is a compact subset of D¯. It is proved, in particular, that if the compact set E “surrounds” the point 0 and all Taylor coefficients of the function h are nonzero, then S(h,E) is dense in A(D).
Keywords: approximation, analytic function, density, h-sum.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00333
Ministry of Education and Science of the Russian Federation НШ-6222.2018.1
This work was supported by the Russian Foundation for Basic Research under grant 18-01-00333 and by the Presidential Program for the State Support of Leading Scientific Schools under grant NSh-6222.2018.1.
Received: 06.05.2017
Revised: 16.10.2017
English version:
Mathematical Notes, 2018, Volume 104, Issue 1, Pages 3–9
DOI: https://doi.org/10.1134/S0001434618070015
Bibliographic databases:
Document Type: Article
UDC: 517.538.5
Language: Russian
Citation: P. A. Borodin, “Approximation by Sums of the Form kλkh(λkz) in the Disk”, Mat. Zametki, 104:1 (2018), 3–10; Math. Notes, 104:1 (2018), 3–9
Citation in format AMSBIB
\Bibitem{Bor18}
\by P.~A.~Borodin
\paper Approximation by Sums of the Form $\sum_k\lambda_kh(\lambda_kz)$ in the Disk
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 1
\pages 3--10
\mathnet{http://mi.mathnet.ru/mzm11666}
\crossref{https://doi.org/10.4213/mzm11666}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833478}
\elib{https://elibrary.ru/item.asp?id=35276445}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 1
\pages 3--9
\crossref{https://doi.org/10.1134/S0001434618070015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000446511500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054366914}
Linking options:
  • https://www.mathnet.ru/eng/mzm11666
  • https://doi.org/10.4213/mzm11666
  • https://www.mathnet.ru/eng/mzm/v104/i1/p3
  • This publication is cited in the following 3 articles:
    1. P. A. Borodin, K. S. Shklyaev, “Density of quantized approximations”, Russian Math. Surveys, 78:5 (2023), 797–851  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. M. A. Komarov, “On the rate of approximation in the unit disc of H1-functions by logarithmic derivatives of polynomials with zeros on the boundary”, Izv. Math., 84:3 (2020), 437–448  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. P. Chunaev, “Interpolation by generalized exponential sums with equal weights”, J. Approx. Theory, 254 (2020), UNSP 105397  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:612
    Full-text PDF :90
    References:71
    First page:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025