Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2002, Volume 66, Issue 2, Pages 367–376
DOI: https://doi.org/10.1070/IM2002v066n02ABEH000381
(Mi im381)
 

This article is cited in 154 scientific papers (total in 154 papers)

Wavelet theory as pp-adic spectral analysis

S. V. Kozyrev
References:
Abstract: We construct a new orthonormal basis of eigenfunctions of the Vladimirov pp-adic fractional differentiation operator. We construct a map of the pp-adic numbers onto the real numbers (the pp-adic change of variables), which transforms the Haar measure on the pp-adic numbers to the Lebesgue measure on the positive semi-axis. The pp-adic change of variables (for p=2p=2) provides an equivalence between the basis of eigenfunctions of the Vladimirov operator and the wavelet basis in L2(R+) generated by the Haar wavelet. This means that wavelet theory can be regarded as p-adic spectral analysis.
Received: 23.02.2001
Bibliographic databases:
Document Type: Article
UDC: 517.58+517.53.02
MSC: 26E30, 46S10
Language: English
Original paper language: Russian
Citation: S. V. Kozyrev, “Wavelet theory as p-adic spectral analysis”, Izv. Math., 66:2 (2002), 367–376
Citation in format AMSBIB
\Bibitem{Koz02}
\by S.~V.~Kozyrev
\paper Wavelet theory as $p$-adic spectral analysis
\jour Izv. Math.
\yr 2002
\vol 66
\issue 2
\pages 367--376
\mathnet{http://mi.mathnet.ru/eng/im381}
\crossref{https://doi.org/10.1070/IM2002v066n02ABEH000381}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918846}
\zmath{https://zbmath.org/?q=an:1016.42025}
\elib{https://elibrary.ru/item.asp?id=14114380}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3843060681}
Linking options:
  • https://www.mathnet.ru/eng/im381
  • https://doi.org/10.1070/IM2002v066n02ABEH000381
  • https://www.mathnet.ru/eng/im/v66/i2/p149
  • This publication is cited in the following 154 articles:
    1. Patrick Erik Bradley, “Theta-induced diffusion on Tate elliptic curves over nonarchimedean local fields”, Pacific J. Math., 334:1 (2025), 13  crossref
    2. Patrick Erik Bradley, “Schottky-Invariant p-Adic Diffusion Operators”, J Fourier Anal Appl, 31:1 (2025)  crossref
    3. Debasis Haldar, “p-Adic Scaling and Generalized Scaling Sets”, P-Adic Num Ultrametr Anal Appl, 17:1 (2025), 16  crossref
    4. Patrick Erik Bradley, “Topological applications of p-adic divergence and gradient operators”, Journal of Mathematical Physics, 66:2 (2025)  crossref
    5. S. F. Lukomskii, A. M. Vodolazov, “On Approximation by Tight Wavelet Frames on the Field of p-Adic Numbers”, P-Adic Num Ultrametr Anal Appl, 16:1 (2024), 60  crossref
    6. V. P. Bocharnikov, S. V. Sveshnikov, “Fuzzy measure on p-adic balls defined on a finite number set”, Programmirovanie, 2024, no. 1  crossref
    7. Ashish Pathak, Guru P. Singh, “Multilevel wavelet packets in sobolev space over local fields of positive characteristic”, Afr. Mat., 35:3 (2024)  crossref
    8. N. Athira, M. C. Lineesh, “Linear and nonlinear pseudo-differential operators on p-adic fields”, J. Pseudo-Differ. Oper. Appl., 15:3 (2024)  crossref
    9. Patrick Erik Bradley, Ángel Morán Ledezma, “Hearing shapes viap-adic Laplacians”, Journal of Mathematical Physics, 64:11 (2023)  crossref
    10. S.F. Lukomskii, A.M. Vodolazov, “On p-adic tight wavelet frames”, Journal of Mathematical Analysis and Applications, 527:1 (2023), 127372  crossref
    11. Debasis Haldar, Animesh Bhandari, “Frame multiresolution analysis on Qp”, J. Pseudo-Differ. Oper. Appl., 14:4 (2023)  crossref
    12. Patrick Erik Bradley, “Heat Equations and Wavelets on Mumford Curves and Their Finite Quotients”, J Fourier Anal Appl, 29:5 (2023)  crossref
    13. Miloš Milovanović, Bojan M. Tomić, Nicoletta Saulig, “Wavelets and stochastic theory: Past and future”, Chaos, Solitons & Fractals, 173 (2023), 113724  crossref
    14. Animesh Bhandari, Sudip Mishra, Subenoy Chakraborty, “p-Adic Weaving Multiframelets”, P-Adic Num Ultrametr Anal Appl, 15:2 (2023), 104  crossref
    15. Ahmad O., Sheikh N.A., Hazari A.A., “On Generalized Inequalities For Nonuniform Wavelet Frames in l-2(K)”, Afr. Mat., 33:1 (2022), 5  crossref  mathscinet  isi
    16. Naqash Sarfraz, Muhammad Aslam, “Some estimates for p-adic fractional integral operator and its commutators on p-adic Herz spaces with rough kernels”, Fract Calc Appl Anal, 25:4 (2022), 1734  crossref
    17. Guru P. Singh, Ashish Pathak, “Biorthogonal Wavelet Packets in Hs(K)”, Int. J. Appl. Comput. Math, 8:1 (2022)  crossref
    18. W.A. Zúñiga-Galindo, “Non-Archimedean quantum mechanics via quantum groups”, Nuclear Physics B, 985 (2022), 116021  crossref
    19. Pathak A., Kumar D., Singh G.P., “The Necessary and Sufficient Conditions For Wavelet Frames in Sobolev Space Over Local Fields”, Bol. Soc. Parana. Mat., 39:3 (2021), 81–92  crossref  mathscinet  isi
    20. Ahmad O., Bhat M.Y., Sheikh N.A., “Construction of Parseval Framelets Associated With Gmra on Local Fields of Positive Characteristic”, Numer. Funct. Anal. Optim., 42:3 (2021), 344–370  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:2817
    Russian version PDF:616
    English version PDF:69
    References:117
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025