Abstract:
We study uniform approximation in the open unit disc D={z:|z|<1} by logarithmic derivatives of C-polynomials, that is, polynomials whose zeros lie on the unit circle C={z:|z|=1}.
We find bounds for the rate of approximation for functions in Hardy class H1(D) and certain subclasses. We prove bounds for the rate of uniform approximation (either in D or its closure) by h-sums ∑kλkh(λkz) with parameters λk∈C.
Citation:
M. A. Komarov, “On the rate of approximation in the unit disc of H1-functions by logarithmic derivatives of polynomials with zeros on the boundary”, Izv. Math., 84:3 (2020), 437–448
\Bibitem{Kom20}
\by M.~A.~Komarov
\paper On the rate of~approximation in the unit disc of~$H^1$-functions by logarithmic derivatives of~polynomials with zeros on the boundary
\jour Izv. Math.
\yr 2020
\vol 84
\issue 3
\pages 437--448
\mathnet{http://mi.mathnet.ru/eng/im8901}
\crossref{https://doi.org/10.1070/IM8901}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4090514}
\zmath{https://zbmath.org/?q=an:1446.30056}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..437K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000541855100001}
\elib{https://elibrary.ru/item.asp?id=45294271}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090877845}
Linking options:
https://www.mathnet.ru/eng/im8901
https://doi.org/10.1070/IM8901
https://www.mathnet.ru/eng/im/v84/i3/p3
This publication is cited in the following 4 articles:
M. A. Komarov, “Density of Simple Partial Fractions with Poles on a Circle in Weighted Spaces for a Disk and a Segment”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 62
M. A. Komarov, “O skorosti interpolyatsii naiprosteishimi drobyami analiticheskikh funktsii s regulyarno ubyvayuschimi koeffitsientami”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 23:2 (2023), 157–168
P. A. Borodin, K. S. Shklyaev, “Density of quantized approximations”, Russian Math. Surveys, 78:5 (2023), 797–851
Abakumov E. Borichev A. Fedorovskiy K., “Chui'S Conjecture in Bergman Spaces”, Math. Ann., 379:3-4 (2021), 1507–1532