Abstract:
Sufficient conditions are obtained for the existence of a k-dimensional invariant manifold that attracts as t→∞ all solutions u(t) of the evolution equation ˙u=−Au+F(u) in a Hilbert space, where A is a linear selfadjoint operator, semibounded from below, with compact resolvent, and F is a uniformly Lipschitz (in suitable norms) nonlinearity; these conditions sharpen previously known conditions and cannot be improved.
Citation:
A. V. Romanov, “Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations”, Russian Acad. Sci. Izv. Math., 43:1 (1994), 31–47
\Bibitem{Rom93}
\by A.~V.~Romanov
\paper Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 43
\issue 1
\pages 31--47
\mathnet{http://mi.mathnet.ru/eng/im855}
\crossref{https://doi.org/10.1070/IM1994v043n01ABEH001557}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1243350}
\zmath{https://zbmath.org/?q=an:0820.34040}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..43...31R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PQ58000002}
Linking options:
https://www.mathnet.ru/eng/im855
https://doi.org/10.1070/IM1994v043n01ABEH001557
https://www.mathnet.ru/eng/im/v57/i4/p36
This publication is cited in the following 23 articles:
Russian Math. Surveys, 78:4 (2023), 635–777
Varga Kalantarov, Anna Kostianko, Sergey Zelik, “Determining functionals and finite-dimensional reduction for dissipative PDEs revisited”, Journal of Differential Equations, 345 (2023), 78
Mikhail Anikushin, “Frequency theorem and inertial manifolds for neutral delay equations”, J. Evol. Equ., 23:4 (2023)
Mikhail Anikushin, “Frequency theorem for parabolic equations and its relation to inertial manifolds theory”, Journal of Mathematical Analysis and Applications, 505:1 (2022), 125454
Anna Kostianko, Xinhua Li, Chunyou Sun, Sergey Zelik, “Inertial Manifolds via Spatial Averaging Revisited”, SIAM J. Math. Anal., 54:1 (2022), 268
Xinhua Li, Chunyou Sun, “Inertial manifolds for a singularly non-autonomous semi-linear parabolic equations”, Proc. Amer. Math. Soc., 149:12 (2021), 5275
Liudmila Kondratieva, Aleksandr Romanov, “Inertial manifolds and limit cycles of dynamical systems in R 2”, Electron. J. Qual. Theory Differ. Equ., 2019, no. 96, 1
Kostianko A., Zelik S., “Nertial Manifolds For 1D Reaction-Diffusion-Advection Systems. Part II: Periodic Boundary Conditions”, Commun. Pure Appl. Anal, 17:1 (2018), 285–317
Kostianko A., Zelik S., “Inertial Manifolds For 1D Reaction-Diffusion-Advection Systems. Part i: Dirichlet and Neumann Boundary Conditions”, Commun. Pure Appl. Anal, 16:6 (2017), 2357–2376
Anna Kostianko, Sergey Zelik, “Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions”, CPAA, 14:5 (2015), 2069
A. V. Romanov, “A Parabolic Equation with Nonlocal Diffusion without a Smooth Inertial Manifold”, Math. Notes, 96:4 (2014), 548–555
Zelik S., “Inertial Manifolds and Finite-Dimensional Reduction For Dissipative PDEs”, Proc. R. Soc. Edinb. Sect. A-Math., 144:6 (2014), 1245–1327
A. Eden, S. V. Zelik, V. K. Kalantarov, “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226
Igor Chueshov, Björn Schmalfuß, “Master-slave synchronization and invariant manifolds for coupled stochastic systems”, J Math Phys (N Y ), 51:10 (2010), 102702
Lingli Xie, Kok-lay Teo, Yi Zhao, “Chaos synchronization for continuous chaotic systems by inertial manifold approach”, Chaos, Solitons & Fractals, 32:1 (2007), 234
Yu. A. Goritsky, “Explicit construction of attracting integral manifolds for a dissipative hyperbolic equation”, J. Math. Sci. (N. Y.), 143:4 (2007), 3239–3252
A. Yu. Goritskii, V. V. Chepyzhov, “Dichotomy property of solutions of quasilinear equations in problems on inertial manifolds”, Sb. Math., 196:4 (2005), 485–511
A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. Math., 65:5 (2001), 977–1001
Alan Ingram, “Broadening Russia's borders?”, Political Geography, 20:2 (2001), 197
A. V. Romanov, “Three counterexamples in the theory of inertial manifolds”, Math. Notes, 68:3 (2000), 378–385