Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1994, Volume 43, Issue 1, Pages 31–47
DOI: https://doi.org/10.1070/IM1994v043n01ABEH001557
(Mi im855)
 

This article is cited in 23 scientific papers (total in 23 papers)

Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations

A. V. Romanov
References:
Abstract: Sufficient conditions are obtained for the existence of a k-dimensional invariant manifold that attracts as t all solutions u(t) of the evolution equation u˙=Au+F(u) in a Hilbert space, where A is a linear selfadjoint operator, semibounded from below, with compact resolvent, and F is a uniformly Lipschitz (in suitable norms) nonlinearity; these conditions sharpen previously known conditions and cannot be improved.
Received: 21.06.1991
Bibliographic databases:
UDC: 517.95
MSC: Primary 34G20, 35K22, 47H15, 58F39; Secondary 35K57, 58F12
Language: English
Original paper language: Russian
Citation: A. V. Romanov, “Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations”, Russian Acad. Sci. Izv. Math., 43:1 (1994), 31–47
Citation in format AMSBIB
\Bibitem{Rom93}
\by A.~V.~Romanov
\paper Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 43
\issue 1
\pages 31--47
\mathnet{http://mi.mathnet.ru/eng/im855}
\crossref{https://doi.org/10.1070/IM1994v043n01ABEH001557}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1243350}
\zmath{https://zbmath.org/?q=an:0820.34040}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..43...31R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PQ58000002}
Linking options:
  • https://www.mathnet.ru/eng/im855
  • https://doi.org/10.1070/IM1994v043n01ABEH001557
  • https://www.mathnet.ru/eng/im/v57/i4/p36
  • This publication is cited in the following 23 articles:
    1. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Varga Kalantarov, Anna Kostianko, Sergey Zelik, “Determining functionals and finite-dimensional reduction for dissipative PDEs revisited”, Journal of Differential Equations, 345 (2023), 78  crossref
    3. Mikhail Anikushin, “Frequency theorem and inertial manifolds for neutral delay equations”, J. Evol. Equ., 23:4 (2023)  crossref
    4. Mikhail Anikushin, “Frequency theorem for parabolic equations and its relation to inertial manifolds theory”, Journal of Mathematical Analysis and Applications, 505:1 (2022), 125454  crossref
    5. Anna Kostianko, Xinhua Li, Chunyou Sun, Sergey Zelik, “Inertial Manifolds via Spatial Averaging Revisited”, SIAM J. Math. Anal., 54:1 (2022), 268  crossref
    6. Xinhua Li, Chunyou Sun, “Inertial manifolds for a singularly non-autonomous semi-linear parabolic equations”, Proc. Amer. Math. Soc., 149:12 (2021), 5275  crossref
    7. Liudmila Kondratieva, Aleksandr Romanov, “Inertial manifolds and limit cycles of dynamical systems in
      R
      2”, Electron. J. Qual. Theory Differ. Equ., 2019, no. 96, 1  crossref
    8. Kostianko A., Zelik S., “Nertial Manifolds For 1D Reaction-Diffusion-Advection Systems. Part II: Periodic Boundary Conditions”, Commun. Pure Appl. Anal, 17:1 (2018), 285–317  crossref  isi
    9. Kostianko A., Zelik S., “Inertial Manifolds For 1D Reaction-Diffusion-Advection Systems. Part i: Dirichlet and Neumann Boundary Conditions”, Commun. Pure Appl. Anal, 16:6 (2017), 2357–2376  crossref  isi
    10. Anna Kostianko, Sergey Zelik, “Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions”, CPAA, 14:5 (2015), 2069  crossref
    11. A. V. Romanov, “A Parabolic Equation with Nonlocal Diffusion without a Smooth Inertial Manifold”, Math. Notes, 96:4 (2014), 548–555  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    12. Zelik S., “Inertial Manifolds and Finite-Dimensional Reduction For Dissipative PDEs”, Proc. R. Soc. Edinb. Sect. A-Math., 144:6 (2014), 1245–1327  crossref  isi
    13. A. Eden, S. V. Zelik, V. K. Kalantarov, “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. Igor Chueshov, Björn Schmalfuß, “Master-slave synchronization and invariant manifolds for coupled stochastic systems”, J Math Phys (N Y ), 51:10 (2010), 102702  crossref  elib
    15. Lingli Xie, Kok-lay Teo, Yi Zhao, “Chaos synchronization for continuous chaotic systems by inertial manifold approach”, Chaos, Solitons & Fractals, 32:1 (2007), 234  crossref  elib
    16. Yu. A. Goritsky, “Explicit construction of attracting integral manifolds for a dissipative hyperbolic equation”, J. Math. Sci. (N. Y.), 143:4 (2007), 3239–3252  mathnet  crossref  mathscinet  elib
    17. A. Yu. Goritskii, V. V. Chepyzhov, “Dichotomy property of solutions of quasilinear equations in problems on inertial manifolds”, Sb. Math., 196:4 (2005), 485–511  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    18. A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. Math., 65:5 (2001), 977–1001  mathnet  crossref  crossref  mathscinet  zmath
    19. Alan Ingram, “Broadening Russia's borders?”, Political Geography, 20:2 (2001), 197  crossref
    20. A. V. Romanov, “Three counterexamples in the theory of inertial manifolds”, Math. Notes, 68:3 (2000), 378–385  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:481
    Russian version PDF:122
    English version PDF:17
    References:74
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025