Loading [MathJax]/jax/output/CommonHTML/jax.js
Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1995, Volume 44, Issue 2, Pages 207–223
DOI: https://doi.org/10.1070/IM1995v044n02ABEH001594
(Mi im800)
 

This article is cited in 26 scientific papers (total in 26 papers)

Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain

A. V. Babin
References:
Abstract: In a domain ω×RRn+1 the elliptic system
2tu+γtu+aΔua0uf(u)=g
is considered with a Neumann boundary condition. U+(u0) denotes the set of solutions u(x,t) of this system defined for t0, equal to u0 for t=0, and bounded in L2(ω) uniformly for t0.
In the space H3/2 of initial data u0 there arises the semigroup {St}, Stu0={υ:υ=u(t), uU+(u0)}, wherein to the point u0 there is assigned the set Stu0, i.e., St is a multivalued mapping. In the paper it is proved that {St} has a global attractor A. A theorem is proved that
A={υ:υ=u(t), uV, tR},
where V is the set of solutions of the elliptic system, defined and bounded for tR.
Received: 19.10.1992
Bibliographic databases:
UDC: 517.95
MSC: Primary 35J55; Secondary 34C35, 47D06
Language: English
Original paper language: Russian
Citation: A. V. Babin, “Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain”, Russian Acad. Sci. Izv. Math., 44:2 (1995), 207–223
Citation in format AMSBIB
\Bibitem{Bab94}
\by A.~V.~Babin
\paper Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 44
\issue 2
\pages 207--223
\mathnet{http://mi.mathnet.ru/eng/im800}
\crossref{https://doi.org/10.1070/IM1995v044n02ABEH001594}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1275899}
\zmath{https://zbmath.org/?q=an:0839.35036}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1995IzMat..44..207B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RB41200001}
Linking options:
  • https://www.mathnet.ru/eng/im800
  • https://doi.org/10.1070/IM1995v044n02ABEH001594
  • https://www.mathnet.ru/eng/im/v58/i2/p3
  • This publication is cited in the following 26 articles:
    1. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Florentine Catharina Fleißner, “Minimal solutions to generalized Λ-semiflows and gradient flows in metric spaces”, Annali di Matematica, 202:1 (2023), 307  crossref
    3. Messoud Efendiev, Fields Institute Monographs, 36, Symmetrization and Stabilization of Solutions of Nonlinear Elliptic Equations, 2018, 177  crossref
    4. Messoud Efendiev, Fields Institute Monographs, 36, Symmetrization and Stabilization of Solutions of Nonlinear Elliptic Equations, 2018, 71  crossref
    5. Messoud Efendiev, Fields Institute Monographs, 36, Symmetrization and Stabilization of Solutions of Nonlinear Elliptic Equations, 2018, 163  crossref
    6. Messoud Efendiev, Fields Institute Monographs, 36, Symmetrization and Stabilization of Solutions of Nonlinear Elliptic Equations, 2018, 199  crossref
    7. Mark Vishik, Sergey Zelik, “Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit”, CPAA, 13:5 (2014), 2059  crossref
    8. Mikhail Z. Zgurovsky, Pavlo O. Kasyanov, Oleksiy V. Kapustyan, José Valero, Nina V. Zadoianchuk, Advances in Mechanics and Mathematics, 27, Evolution Inclusions and Variation Inequalities for Earth Data Processing III, 2012, 163  crossref
    9. Mikhail Z. Zgurovsky, Pavlo O. Kasyanov, Oleksiy V. Kapustyan, José Valero, Nina V. Zadoianchuk, Advances in Mechanics and Mathematics, 27, Evolution Inclusions and Variation Inequalities for Earth Data Processing III, 2012, 3  crossref
    10. Messoud Efendiev, François Hamel, “Asymptotic behavior of solutions of semilinear elliptic equations in unbounded domains: Two approaches”, Advances in Mathematics, 2011  crossref
    11. M. I. Vishik, V. V. Chepyzhov, “Trajectory attractors of equations of mathematical physics”, Russian Math. Surveys, 66:4 (2011), 637–731  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    12. Maurizio Grasselli, Giulio Schimperna, Sergey Zelik, “Trajectory and smooth attractors for Cahn–Hilliard equations with inertial term”, Nonlinearity, 23:3 (2010), 707  crossref  zmath  isi  elib
    13. Francisco Morillas, José Valero, “On the Kneser property for reaction–diffusion systems on unbounded domains”, Topology and its Applications, 156:18 (2009), 3029  crossref
    14. G. Iovane, A.V. Kapustyan, J. Valero, “Asymptotic behaviour of reaction–diffusion equations with non-damped impulsive effects”, Nonlinear Analysis: Theory, Methods & Applications, 68:9 (2008), 2516  crossref
    15. A.V. Kapustyan, J. Valero, “Weak and strong attractors for the 3D Navier–Stokes system”, Journal of Differential Equations, 240:2 (2007), 249  crossref
    16. David Cheban, Cristiana Mammana, “Relation between Different Types of Global Attractors of Set-Valued Nonautonomous Dynamical Systems”, Set-Valued Anal, 13:3 (2005), 291  crossref  mathscinet  zmath  isi
    17. T. Caraballo, P. Marı́n-Rubio, J. Valero, “Autonomous and non-autonomous attractors for differential equations with delays”, Journal of Differential Equations, 208:1 (2005), 9  crossref
    18. T. Caraballo, J. A. Langa, J. Valero, “Asymptotic behaviour of monotone multi-valued dynamical systems”, Dynamical Systems, 20:3 (2005), 301  crossref
    19. A. Mielke, S. V. Zelik, “Infinite-dimensional trajectory attractors of elliptic boundary-value problems in cylindrical domains”, Russian Math. Surveys, 57:4 (2002), 753–784  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    20. J. M. Ball, Mechanics: From Theory to Computation, 2000, 447  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:447
    Russian version PDF:113
    English version PDF:29
    References:107
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025