Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 5, Pages 977–1001
DOI: https://doi.org/10.1070/IM2001v065n05ABEH000359
(Mi im359)
 

This article is cited in 10 scientific papers (total in 10 papers)

Finite-dimensional dynamics on attractors of non-linear parabolic equations

A. V. Romanov

All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences
References:
Abstract: We show that one-dimensional semilinear second-order parabolic equations have finite-dimensional dynamics on attractors. In particular, this is true for reaction-diffusion equations with convection on (0,1).
We obtain new topological criteria for a class of dissipative equations of parabolic type in Banach spaces to have finite-dimensional dynamics on invariant compact sets. The dynamics of these equations on an attractor A is finite-dimensional (can be described by an ordinary differential equation) if A can be embedded in a finite-dimensional C1-submanifold of the phase space.
Received: 20.07.2000
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. Math., 65:5 (2001), 977–1001
Citation in format AMSBIB
\Bibitem{Rom01}
\by A.~V.~Romanov
\paper Finite-dimensional dynamics on attractors of non-linear parabolic equations
\jour Izv. Math.
\yr 2001
\vol 65
\issue 5
\pages 977--1001
\mathnet{http://mi.mathnet.ru/eng/im359}
\crossref{https://doi.org/10.1070/IM2001v065n05ABEH000359}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874356}
\zmath{https://zbmath.org/?q=an:1026.37064}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747018155}
Linking options:
  • https://www.mathnet.ru/eng/im359
  • https://doi.org/10.1070/IM2001v065n05ABEH000359
  • https://www.mathnet.ru/eng/im/v65/i5/p129
  • This publication is cited in the following 10 articles:
    1. A. V. Romanov, “Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations”, Math. Notes, 113:2 (2023), 267–273  mathnet  crossref  crossref
    2. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Romanov V A., “Final Dynamics of Systems of Nonlinear Parabolic Equations on the Circle”, AIMS Math., 6:12 (2021), 13407–13422  crossref  mathscinet  isi
    4. Kostianko A. Zelik S., “Nertial Manifolds For 1D Reaction-Diffusion-Advection Systems. Part II: Periodic Boundary Conditions”, Commun. Pure Appl. Anal, 17:1 (2018), 285–317  crossref  mathscinet  zmath  isi  scopus
    5. Kostianko A. Zelik S., “Inertial Manifolds For 1D Reaction-Diffusion-Advection Systems. Part i: Dirichlet and Neumann Boundary Conditions”, Commun. Pure Appl. Anal, 16:6 (2017), 2357–2376  crossref  mathscinet  zmath  isi  scopus
    6. Anna Kostianko, Sergey Zelik, “Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions”, CPAA, 14:5 (2015), 2069  crossref  mathscinet  zmath  scopus
    7. Zelik S., “Inertial Manifolds and Finite-Dimensional Reduction For Dissipative PDEs”, Proc. R. Soc. Edinb. Sect. A-Math., 144:6 (2014), 1245–1327  crossref  mathscinet  zmath  isi  scopus
    8. de Moura E.P., Robinson J.C., “Log-Lipschitz Continuity of the Vector Field on the Attractor of Certain Parabolic Equations”, Dyn. Partial Differ. Equ., 11:3 (2014), 211–228  crossref  mathscinet  zmath  isi  scopus
    9. A. Eden, S. V. Zelik, V. K. Kalantarov, “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. A. V. Romanov, “Effective finite parametrization in phase spaces of parabolic equations”, Izv. Math., 70:5 (2006), 1015–1029  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:646
    Russian version PDF:348
    English version PDF:32
    References:101
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025